Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T08:22:16.519Z Has data issue: false hasContentIssue false

Genetics of MuBl and of a complement defect in inbred strains of mice

Published online by Cambridge University Press:  14 April 2009

B. Cinader
Affiliation:
Subdivision of Immunochemistry, Division of Biological Research, Ontario Cancer Institute, and Departments of Medical Biophysics and Pathological Chemistry, Connaught Medical Research Laboratories
S. Dubiski
Affiliation:
Department of Immunology, Toronto Western Hospital, and Department of Pathological Chemistry, Connaught Medical Research Laboratories
A. C. Wardlaw
Affiliation:
Connaught Medical Research Laboratories, University of Toronto, Toronto, Ontario, Canada

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A mouse antigen, MuB1, has been shown by the study of backcrosses to be inherited in a unifactorial dominant manner. Its inheritance is not linked with gamma globulin allotypes, but has been shown to be linked with the presence of the haemolytic complement system. The concentration of MuB1 in the serum of several inbred strains of mice showed sex-associated differences; however, the presence of MuBl did not depend on the sex of the parents or on the sex of the offspring. The inheritance of antibody responsiveness is discussed in terms of the inheritance of the antigen, MuB1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Ben-Efraim, S. & Cinader, B. (1964). The role of complement in the passive cutaneous reaction of mice. J. exp. Med. 120, 925942.CrossRefGoogle ScholarPubMed
Cinader, B. (1960). Specificity and inheritance of antibody response: a possible steering mechanism. Nature, Lond. 188, 619622.CrossRefGoogle ScholarPubMed
Cinader, B. (1961). Quelques aspects de la tolérance immunologique à l'égard d'antigènes définis. Annls. Inst. Pasteur, 100, 265289.Google Scholar
Cinader, B. & Dubiski, S. (1963 a). The effect on immunogenicity of acquired immunological tolerance. Colloques. int. Cent. natn. Rech. scient. 116, 255305.Google Scholar
Cinader, B. & Dubiski, S. (1963 b). An alpha-globulin allotype in the mouse (MuB1). Nature, Lond. 200, 781.CrossRefGoogle Scholar
Cinader, B. & Dubiski, S. (1964). Effect of autologous protein on the specificity of the antibody response: mouse and rabbit antibody to MuB1. Nature, Lond. 202, 102103.CrossRefGoogle Scholar
Cinader, B., Dubiski, S. & Wardlaw, A. C. (1965). Inheritance and properties of the antigen MuB1 and its relation to haemolytic complement. Nature, Lond. 205, 9798.CrossRefGoogle Scholar
Cinader, B., Dubiski, S. & Wardlaw, A. C. (1964). Distribution, inheritance, and properties of an antigen, MuB1, and its relation to hemolytic complement. J. exp. Med. 120, 897924.CrossRefGoogle ScholarPubMed
Dray, S., Lieberman, R. & Hoffman, H. A. (1963). Two murine ϒ-globulin allotypic specificities identified by ascitic fluid isoprecipitins and determined by allelic genes. Proc. Soc. exp. Biol. Med. 113, 509513.CrossRefGoogle Scholar
Dubiski, S. & Cinader, B. (1963 a). A new allotypic specificity in the mouse (MuA2). Nature, Lond. 197, 705.Google Scholar
Dubiski, S. & Cinader, B. (1963 b). A new allotypic specificity in the mouse (MuA2). Can. J. Biochem. Physiol. 41, 13111315.CrossRefGoogle Scholar
Erickson, R. P., Tachibana, D. K., Herzenberg, L. A., & Rosenberg, L. T. (1964). A single gene controlling hemolytic complement and a serum antigen in the mouse. J. Immun. 92, 611615.Google Scholar
Herzenberg, L. A., Tachibana, D. K., Herzenberg, L. A. & Rosenberg, L. T. (1963). A gene locus concerned with hemolytic complement in Mus musculus. Genetics, 48, 711715.CrossRefGoogle ScholarPubMed
Kabat, E. A. (1961). Kabat and Mayer's Experimental Immunochemistry, 2nd ed., p. 241. Springfield, Illinois: Charles C. Thomas.Google Scholar
Levine, B. B., Ojeda, A. & Benacerraf, B. (1963). Studies on artificial antigens. III. The genetic control of the immune response to hapten-poly-L-lysine conjugates in guinea pigs. J. exp. Med. 118, 953957.CrossRefGoogle ScholarPubMed
Linscott, W. D. & Nishioka, K. (1963). Components of guinea pig complement. II. Separation of serum fractions essential for immune hemolysis. J. exp. Med. 118, 795815.CrossRefGoogle ScholarPubMed
Nilsson, U. & MüLler-Eberhard, H. J. (1965). Immunologic relations between human BlF-globulin and mouse MuB1 (HC). Fedn Proc. Fedn Am. Socs exp. Biol. 24, 620.Google Scholar
Oudin, J. (1956). L'“Allotypie” de certains antigenes proteidiques du serum. C. r. hebd. Séanc. Acad. Sci., Paris, 242, 26062608.Google Scholar
Rosenberg, L. T. & Tachibana, D. K. (1962). Activity of mouse complement. J. Immun. 89, 861867.CrossRefGoogle ScholarPubMed
Sttffel, C., Biozzi, G., Mouton, D., Bouthillter, Y. & Decreusefond, C. (1964). Studies on phagocytosis of bacteria by the reticulo-endothelial system in a strain of mice lacking hemolytic complement. J. Immun. 93, 246249.CrossRefGoogle Scholar
Terry, W. D., Borsos, T. & Rapp, H. J. (1964). Differences in serum complement activity among inbred strains of mice. J. Immun. 92, 576578.CrossRefGoogle ScholarPubMed
Wunderlich, J. & Herzenbetrg, L. A. (1963). Genetics of a gamma globulin isoantigen (allotype) in the mouse. Proc. natn. Acad. Sci., U.S.A. 49, 592598.CrossRefGoogle ScholarPubMed