Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T19:23:04.376Z Has data issue: false hasContentIssue false

Genetical studies on the skeleton of the mouse XXVII. The Development of oligosyndactylism

Published online by Cambridge University Press:  14 April 2009

Hans Grüneberg
Affiliation:
Experimental Genetics Research Unit (Medical Research Council), University College London

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The complex anatomy of the adult limb skeleton of Os/+ mice is attributable to a reduction of the preaxial margin of the foot plates. This is detectable, in the fore limbs, in the 11-day stage, i.e. before condensations of mesenchyme have taken place. The involvement of the skeleton is thus secondary to an earlier defect in the foot plates. The cause of the latter has not been discovered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

References

REFERENCES

Carter, T. C. (1954). The genetics of luxate mice. IV. Embryology. J. Genet. 52, 135.CrossRefGoogle Scholar
Center, E. M. (1955). Postaxial polydactyly in the mouse. J. Hered. 46, 144148.CrossRefGoogle Scholar
Chang, Tso-kan (1939). The development of polydactylism in a special strain of Musmusculus. Peking nat. Hist. Bull. 14, 119132.Google Scholar
Dantorth, C. H. (1947). Morphology of the feet in polydactyl cats. Amer. J. Anat. 80, 143172.CrossRefGoogle Scholar
Forsthoefel, P. F. (1959). The embryological development of the skeletal effects of the luxoid gene in the mouse, including its interactions with the luxate gene. J. Morph. 104, 89142.CrossRefGoogle Scholar
Freye, H. (1954). Anatomische und entwicklungsgeschichtliche Untersuchungen am Skelett normaler und oligodactyler Mäuse. Wiss. Z. Univ. Halle, Math.-Nat., 3, 801824.Google Scholar
Grüneberg, H. (1956). Genetical studies on the skeleton of the mouse. XVIII. Three genes for syndaetylism. (With an appendix by D. S. Falconer.) J. Genet. 54, 113145.CrossRefGoogle Scholar
Grüneberg, H. (1960). Genetical studies on the skeleton of the mouse. XXV. The development of syndaetylism. Genet. Res. 1, 196213.CrossRefGoogle Scholar
Holmgren, N. (1933). On the origin of the tetrapod limb. Acta Zool., Stockh., 14, 185295.CrossRefGoogle Scholar
Holmgren, N. (1952). An embryological analysis of the mammalian carpus and its bearing upon the question of the origin of the tetrapod limb. Acta Zool., Stockh., 33, 1115.CrossRefGoogle Scholar
Milaire, J. (1956). Contribution a l'étude morphologique et cytochimique des bourgeons de membres chez le Rat. Arch. Biol., Paris, 67, 297391.Google Scholar
Schmidt-Ehrenberg, E. C. (1942). Die Embryogenese des Extremitätenskelettes der Säugetiere. Ein Beitrag zur Frage der Entwicklung der Tetrapodengliedmassen. Rev. suisse Zool. 49, 33131.Google Scholar
Scott, J. P. (1937). The embryology of the guinea pig. III. The development of the poly-dactylous monster. A case of growth accelerated at a particular period by a semi-dominant lethal gene. J. exp. Zool. 77, 123157.CrossRefGoogle Scholar
Tschumi, P. (1954). Konkurrenzbedingte Bückbildungen der Hinterextremität von Xenopus nach Behandlung mit einem Chloraethylamin. Rev. suisse Zool. 61, 177270.CrossRefGoogle Scholar
Zwilling, E. (1956). Interaction between limb bud ectoderm and mesoderm in the chick embryo. II. Experimental limb duplication. J. exp. Zool. 132, 173187.CrossRefGoogle Scholar
Zwilling, E. & Ames, J. F. (1958). Polydactyly, related defects and axial shifts—a critique. Amer. Nat. 92, 257266.CrossRefGoogle Scholar
Zwilling, E. & Hansborough, L. A. (1956). Interaction between limb bud ectoderm and mesoderm in the chick embryo. III. Experiments with polydactylous limbs. J. exp. Zool. 132, 219239.CrossRefGoogle Scholar