Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T17:10:03.341Z Has data issue: false hasContentIssue false

Genetic variation in β-adrenergic receptors in mice: A magnesium effect determined by a single gene

Published online by Cambridge University Press:  14 April 2009

Jasna Markovac
Affiliation:
Department of Human Genetics, Box 015, University of Michigan Medical School, 1137 E. Catherine Street, Ann Arbor, Michigan 48109
Robert P. Erickson
Affiliation:
Department of Human Genetics, Box 015, University of Michigan Medical School, 1137 E. Catherine Street, Ann Arbor, Michigan 48109
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genetic variation in the amount of binding of dihydroalprenolol (a potent antagonist) to hepatocyte β-adrenergic receptors has been observed among inbred strains of mice. This variation is attributed to a differential effect of magnesium on the receptors between the high and low binding strains. Evidence for a single gene controlling the magnesium effect on dihydroalprenolol binding to β-adrenergic receptors was found using recombinant inbred lines between the high and low strains. We suggest the provisional gene symbol Badm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Abramowitz, J., Iyengar, R. & Birnbaumer, L. (1982). Guanine nucleotide and magnesium ion regulation of the interaction of gonadotropi and β-adrenergic receptors with their hormones: A comparative study using a single membrane system. Endocrinology 110, 336346.CrossRefGoogle Scholar
Alvarez, B. & Bruno, J. J. (1977). Activation of cardiac adenylate cyclase: Hormonal modification of the magnesium ion requirement. Proceedings of the National Academy of Sciences U.S.A. 74, 9295.CrossRefGoogle ScholarPubMed
Bailey, D. W. (1971). Recombinant inbred strains – an aid to finding identity, linkage and function of histocompatibility and other genes. Transplantation 11, 325327.CrossRefGoogle ScholarPubMed
Bilezikian, J. P., Dornfeld, A. M. & Gammon, D. E. (1978). Structure-binding-activity analysis of β-adrenergic amines. I. Binding to the β receptor and activation of adenylate cyclase. Biochemical Pharmacology 27, 14551461.CrossRefGoogle Scholar
Bird, S. J. & Maguire, M. E. (1978). The agonist-specific effect of magnesium ion on binding by beta-adrenergic receptors in S49 lymphoma cells. Journal of Biological Chemistry 253, 88268834.CrossRefGoogle ScholarPubMed
Birnbaumer, L., Pohl, S. L. & Rodbell, M. (1969). Adenyl cyclase in fat cells: Properties and the effects of adrenocorticotropin and fluoride. Journal of Biological Chemistry 244, 34683476.CrossRefGoogle ScholarPubMed
Cassel, D. & Selinger, Z. (1978). Mechanism of adenylate cyclase activation through the β adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP. Proceedings of the National Academy of Sciences U.S.A. 75, 41554159.CrossRefGoogle ScholarPubMed
Chang, K., Blanchard, S. G. & Cuatrecasas, P. (1983). Unmasking of magnesium dependent high-affinity binding sites for [D Ala2, D Leu5] enkephalin after pretreatment of brain membranes with guanine nucleotides. Proceedings of the National Academy of Sciences U.S.A. 80, 940944.CrossRefGoogle ScholarPubMed
Ciaranello, E. D. (1979). Genetic regulation of the catecholamine synthesizing enzymes. In Genetic Variation in Hormone Systems, vol. 1 (ed. Shire, J. M.), pp. 4961. Boca Raton, Florida: CRC Press.Google Scholar
Diener, M. D., Wolfe, R. A. & Insel, P. A. (1981). Replacement of serum with a defined medium increases β-adrenergic receptor number in cultured glioma cells. Experimental Cell Research 131, 424427.Google Scholar
Drummond, G. I. & Duncan, L. (1970). Adenyl cyclase in cardiac tissue. Journal of Biological Chemistry 245, 976983.CrossRefGoogle ScholarPubMed
Drummond, G. I., Severson, D. L. & Duncan, L. (1971). Adenyl cyclase: Kinetic properties and nature of fluoride and hormone stimulation. Journal of Biological Chemistry 246, 41664173.CrossRefGoogle ScholarPubMed
Erickson, R. P., Butley, M. S., Martin, S. R. & Betlach, C. J. (1979). Variation among inbred strains of mice in 3′:5′ cyclic adenosine monophosphate levels in spermatozoa. Genetical Research 33, 129136.CrossRefGoogle Scholar
Hanski, E. & Levitzki, A. (1978). The absence of desensitization on the β-adrenergic receptors of turkey reticulocytes and erythrocytes and its possible origin. Life Sciences 22, 5360.CrossRefGoogle ScholarPubMed
Heideman, W., Wierman, B. M. & Storm, D. R. (1982). GTP is not required for calmodulin stimulation of brain adenylate cyclase. Proceedings of the National Academy of Sciences U.S.A. 79, 14621465.CrossRefGoogle Scholar
Hindin, D. & Erickson, R. P. (1979). Regional and strain variation in brain 3′:5′ cyclic adenosine monophosphate of inbred mice. Experientia 35, 10251026.CrossRefGoogle Scholar
Hirata, F. & Axelrod, J. (1980). Phospholipid methylation and biological signal transmission. Science 209, 10821090.CrossRefGoogle ScholarPubMed
Hui, K. K., Kittrelle, J., Wolfe, R. N., Borst, S. & Conolly, M. E. (1981). Extracellular magnesium is not required for β-adrenergic drug-receptor interactions in intact human lymphocytes. Life Sciences 29, 523530.CrossRefGoogle Scholar
Iyengar, R. (1981). Hysteretic activation of adenylyl cyclases. II. Mg ion regulation of the activation of the regulatory component as analyzed by reconstitution. Journal of Biological Chemistry 256, 1104211050.CrossRefGoogle ScholarPubMed
Katada, T. & Ui, M. (1982). Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proceedings of the National Academy of Sciences U.S.A. 79, 31293133.CrossRefGoogle ScholarPubMed
Krall, J. T. & Korenmann, S. G. (1979). Regulation of uterine smooth muscle cell β-adrenergic catecholamine-sensitive adenyl cyclase by Mg++ and guanylyl nucleotide. Bioichemical Pharmacology 28, 27712775.CrossRefGoogle ScholarPubMed
Lafuse, W. & Edidin, M. (1980). Influence of the mouse major histocompatibility complex, H-2, on liver adenylate cyclase activity and on glucagon binding to liver cell membranes. Biochemistry 19, 4954.CrossRefGoogle ScholarPubMed
Lafuse, W., Meruelo, D. & Edidin, M. (1979). The genetic control of liver cAMP levels in mice. Immunogenetics 9, 5765.CrossRefGoogle Scholar
Lefkowitz, R. J. (1974). Stimulation of catecholamine-sensitive adenylate cyclase by 5′ guanylyl-imidodiphosphate. Journal of Biological Chemistry 249, 61196124.CrossRefGoogle ScholarPubMed
Levitzki, A. (1981). The β-adrenergic receptor and its mode of coupling to adenylate cyclase. CRC Critical Reviews in Biochemistry 10, 81111.CrossRefGoogle ScholarPubMed
Limbied, R. E., Gill, M. D., Stadel, J. M., Hickey, A. R. & Lefkowitz, R. J. (1980). Loss of β-adrenergic receptor-guanine nucleotide regulatory protein interactions accompanies decline in catecholamine responsiveness of adenylate cyclase in maturing rat erythrocytes. Journal of Biological Chemistry 255, 18541861.CrossRefGoogle Scholar
Limbird, R. E., Gill, M. D. & Lefkowitz, R. J. (1980). Agonist-promoted coupling of the β-adrenergic receptor with the guanine nucleotide regulatory protein of the adenylate cyclase system. Proceedings of the National Academy of Sciences U.S.A. 77, 775779.CrossRefGoogle ScholarPubMed
Limbird, L. E. & Lefkowitz, R. J. (1976). Adenylate cyclase coupled β-adrenergic receptors: effect of membrane lipid-perturbing agents on receptor binding and enzyme stimulation by catecholamines. Molecular Pharmacology 12, 559567.Google ScholarPubMed
Londos, C., Solomon, Y., Lin, M. C., Harwood, J. P., Schramm, M., Wolf, J. & Rodbell, M. (1974). 5′-Guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proceedings of the National Academy of Sciences U.S.A. 71, 30873090.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Maderspach, K. & Fajszi, C. (1982). β-Adrenergic receptors of brain cells: membrane integrity implies apparent positive cooperativity and higher affinity. Biochimica et Biophysica Acta 692, 469478.CrossRefGoogle ScholarPubMed
Malbon, C. C. (1980). Liver cell adenylate cyclase and &bgr;-adrenergic receptors. Journal of Biological Chemistry 255, 86928699.CrossRefGoogle Scholar
Meruelo, D. & Edidin, M. (1974). Association of mouse liver adenosine 3′,5′-cyclic monophos-phate (cyclic AMP) levels with histocompatibility-2 genotype. Proceedings of the National Academy of Sciences U.S.A. 72, 26442648.CrossRefGoogle Scholar
Robison, G. A., Butcher, R. W. & Sutherland, E. W. (1971). Cyclic AMP and hormone action. Chap. 2 in Cyclic AMP, pp. 1747. New York: Academic Press.CrossRefGoogle ScholarPubMed
Rodbell, M. (1980). The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284, 1722.CrossRefGoogle ScholarPubMed
Severson, D. L., Drummond, G. I. & Sulakhe, P. V. (1972). Adenyl cyclase: Kinetic properties and hormonal stimulation. Journal of Biological Chemistry 247, 29492958.CrossRefGoogle ScholarPubMed
Shire, J. M. (1979). The uses and consequences of genetic variation in hormone systems. In Genetic Variation in Hormone Systema, vol. 1 (ed. Shire, J. M.), pp. 19. Boca Raton, Florida: CRC Press.Google Scholar
Swank, R. T. & Bailey, D. W. (1973). Recombinant inbred lines: Value in genetic analysis of biochemical variants. Science 181, 12491252.CrossRefGoogle ScholarPubMed
Williams, L. T. & Lefkowitz, R. J. (1978). Receptor Binding Studies in Adrenergic Pharmacology. New York: Raven Press.Google Scholar
Williams, L. T., Mullikin, D. & Lefkowitz, R. J. (1978). Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors. Journal of Biological Chemistry 253, 29842989.CrossRefGoogle ScholarPubMed
Zelenka, P. S., Beebe, D. C. & Feagans, D. E. (1982). Transmethylation of phosphatidyl-ethanolamine: an initial event in embryonic chicken lens fiber cell differentiation. Science 217, 12651267.CrossRefGoogle ScholarPubMed