Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T20:25:38.912Z Has data issue: false hasContentIssue false

A genetic model of interpopulation variation and covariation of quantitative characters

Published online by Cambridge University Press:  14 April 2009

Zhao-Bang Zeng
Affiliation:
Department of Statistics, North Carolina State University, Box 8203, Raleigh, NC 27695-8203USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evolutionary consequences of natural selection, migration, genotype–environment interaction, and random genetic drift on interpopulation variation and covariation of quantitative characters are analysed in terms of a selection model that partitions natural selection into directional and stabilizing components. Without migration, interpopulation variation and covariation depend mainly on the pattern and intensities of selection among populations and the harmonic mean of effective population sizes. Both transient and equilibrium covariance structures are formulated with suitable approximations. Migration reduces the differentiation among populations, but its effect is less with genotype–environment interaction. In some special cases of genotype–environment interaction, the equilibrium interpopulation variation and covariation is independent of migration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Atchley, W. R., Rutledge, J. J. & Cowley, D. E. (1982). A multivariate statistical analysis of direct and correlated response to selection in the rat. Evolution 36, 677698.CrossRefGoogle Scholar
Bader, R. S. & Hall, J. S. (1960). Osteometric variation and function in bats. Evolution 14, 817.CrossRefGoogle Scholar
Baker, A. J. (1980). Morphometric differentiation in New Zealand population of the house sparrow (Passer domesticus). Evolution 34, 638653.Google ScholarPubMed
Bodmer, W. F. & Cavalli-Sforza, L. L. (1968). A migration matrix model for the study of random genetic drift. Genetics 59, 565592.CrossRefGoogle Scholar
Bulmer, M. G. (1971 a). Stable equilibrium under the two-island model. Heredity 27, 321330.CrossRefGoogle Scholar
Bulmer, M. G. (1971 b). Stable equilibrium under the migration matrix model. Heredity 27, 419430.CrossRefGoogle Scholar
Chakraborty, R. & Nei, M. (1982). Genetic differentiation of quantitative characters between populations and species. I. Mutation and random genetic drift. Genetical Research 39, 303314.CrossRefGoogle Scholar
Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36, 499516.CrossRefGoogle ScholarPubMed
Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution 42, 958968.CrossRefGoogle ScholarPubMed
Cheverud, J. M. & Leamy, L. J. (1985). Quantitative genetics and the evolution of ontogeny. III. Ontogenetic changes in correlation structure among live-body traits in random-bred mice. Genetical Research 46, 325335.CrossRefGoogle Scholar
Cheverud, J. M., Rutledge, J. J. & Atchley, W. R. (1983). Quantitative genetics of development: Genetic correlations among age-specific trait values and the evolution of ontogeny. Evolution 37, 895905.Google ScholarPubMed
Clayton, G. A. & Robertson, A. (1955). Mutation and quantitative variation. American Naturalist 89, 151158.CrossRefGoogle Scholar
Cockerham, C. C. & Tachida, H. (1987). The evolution and maintenance of quantitative genetic variation by mutation. Proceedings of the National Academy of Science, USA 84, 62056209.CrossRefGoogle Scholar
Felsenstein, J. (1977). Multivariate normal genetic models with a finite number of loci. In Proceedings of the International Conference on Quantitative Genetics (ed. Pollak, E., Kempthorne, O. and Bailey, T. B.), pp. 227246. Ames: Iowa State University Press.Google Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist 125, 115.CrossRefGoogle Scholar
Falconer, D. S. (1981). Introduction to Quantitative Genetics, 2nd edn.London: Longman.Google Scholar
Hill, W. G. & Thompson, R. (1978). Probabilities of non-positive definite between-group or genetic covariance matrices. Biometrics 34, 429439.CrossRefGoogle Scholar
Johnson, N. S. & Mickevich, M. F. (1977). Variability and evolutionary rates of characters. Evolution 31, 642648.CrossRefGoogle ScholarPubMed
Kluge, A. G. & Kerfoot, W. C. (1973). The predictability and regularity of character divergence. American Naturalist 107, 426442.CrossRefGoogle Scholar
Kohn, L. A. P. & Atchley, W. R. (1988). How similar are genetic correlation structures? Data from mice and rats. Evolution 42, 467481.Google ScholarPubMed
Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314334.CrossRefGoogle ScholarPubMed
Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33, 402416.Google ScholarPubMed
Lande, R. (1980 a). Genetic variation and phenotypic evolution during allopatric speciation. American Naturalist 116, 463479.CrossRefGoogle Scholar
Lande, R. (1980 b). The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94, 203215.CrossRefGoogle ScholarPubMed
Lofsvold, D. (1986). Quantitative genetics of morphological differentiation in Peromyscus. I. Tests of the homogeneity of genetic covariance structure among species and subspecies. Evolution 40, 559573.Google ScholarPubMed
Lynch, M. & Hill, W. G. (1986). Phenotypic evolution by neutral mutation. Evolution 40, 915935.CrossRefGoogle ScholarPubMed
Olson, E. C. & Miller, R. L. (1958). Morphological Integration. Chicago: University of Chicago Press.Google Scholar
Pierce, B. A. & Mitton, J. B. (1979). A relationship of genetic variation within and among populations: an extension of the Kluge–Kerfoot phenomenon. Systematic Zoology 28, 6370.CrossRefGoogle Scholar
Robertson, A., (1952). The effect of inbreeding on the variation due to recessive genes. Genetics 37, 189207.CrossRefGoogle ScholarPubMed
Rohlf, F. J., Gilmartin, A. J. & Hart, G. (1983). The Kluge–Kerfoot phenomenon – a statistical artifact. Evolution 37, 180202.Google ScholarPubMed
Schmalhausen, I. I. (1949). Factors of Evolution, the Theory of Stabilizing Selection. Philadelphia: Blakiston.Google Scholar
Slatkin, M. (1978). Spatial patterns in the distribution of polygenic characters. Journal of Theoretical Biology 70, 213228.CrossRefGoogle ScholarPubMed
Sokal, R. R. (1976). The Kluge–Kerfoot phenomenon reexamined. American Naturalist 110, 10771091.CrossRefGoogle Scholar
Sokal, R. R. (1978). Population differentiation: something new or more of the same? In Ecological Genetics: the Interface (ed. Brussard, P. F.), pp. 215239. New York: Springer-Verlag.CrossRefGoogle Scholar
Sokal, R. R., Bird, J. & Riska, B. (1980). Geographic variation in Pemphigus populicaulis (Insecta: Aphididae) in Eastern North America. Biological Journal of the Linnean Society 14, 163200.CrossRefGoogle Scholar
Sokal, R. R. & Riska, B. (1981). Geographic variation in Pemphigus populitransversus (Insecta: Aphididae). Biological Journal of the Linnean Society 15, 201233.CrossRefGoogle Scholar
Thomas, P. A. (1968). Variation and covariation in characters of the rabbit tick. Haemaphysalis leporispalustris. University of Kansas Science Bulletin 47, 829862.Google Scholar
Via, S. & Lande, R. (1985). Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505522.CrossRefGoogle ScholarPubMed
Via, S. & Lande, R. (1987). Evolution of genetic variability in a spatially heterogeneous environment: effects of genotype-environment interaction. Genetical Research 49, 147156.CrossRefGoogle Scholar
Waddington, C. H. (1957). The Strategy of the Genes. London: Allen and Unwin.Google Scholar
Wright, S. (1951). The genetical structure of populations. Annals of Eugenics 15, 323354.CrossRefGoogle ScholarPubMed
Zeng, Z.-B. (1988). Long-term correlated response, interpopulation covariation and interspecific allometry. Evolution 42, 363374.CrossRefGoogle ScholarPubMed