Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T17:56:03.601Z Has data issue: false hasContentIssue false

A genetic map of several mutations affecting the mucopeptide layer of Escherichia coli

Published online by Cambridge University Press:  14 April 2009

H. J. W. Wijsman
Affiliation:
Institute of Genetics, University of Amsterdam, Amsterdam, the Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several temperature-sensitive mutants of Escherichia coli were isolated which lyse at the restrictive temperature. Some of these possess a biochemically defined lesion in cell-wall mucopeptide synthesis. Three genes, termed murC, E and F, have been localized between the azi and leu markers. From transductional data a fine structure map was constructed of the mur mutations, establishing the order of the genes. The genetic relationship between these cell wall genes and neighbouring genes involved in cell division is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

References

REFERENCES

Bazill, G. W. (1967). Lethal unbalanced growth in bacteria. Nature, London 216, 346349.CrossRefGoogle ScholarPubMed
Cox, E. C. & Yanofsky, C. (1969). Mutator gene studies in Escherichia coli. Journal of Bacteriology 100, 390397.CrossRefGoogle ScholarPubMed
Comb, D. G. (1962). The enzymatic addition of d-alanyl-d-alanine to a uridine nucleotidepeptide. Journal of Biological Chemistry 237, 16011604.CrossRefGoogle ScholarPubMed
Folk, W. R. & Berg, P. (1970). Isolation and partial characterization of Escherichia coli mutants with altered glycyl transfer ribonucleic acid synthetases. Journal of Bacteriology 102, 193203.CrossRefGoogle ScholarPubMed
Gross, J. & Englesberg, E. (1959). Determination of the order of mutational sites governing l-arabinose utilization in Escherichia coli B/r by transduction with phage P1bt. Virology 9, 314331.CrossRefGoogle Scholar
Gunetileke, K. G. & Anwar, R. A. (1966). Biosynthesis of uridine diphospho-N-acetyl muramic acid. Journal of Biological Chemistry 241, 57405743.CrossRefGoogle ScholarPubMed
Gunetileke, K. G. & Anwar, R. A. (1968). Biosynthesis of uridine diphospho-N-acetyl muramic acid. II. Biosynthesis and properties of pyruvate-uridine diphospho-N-acetyl-glucosamine transferase and characterisation of uridine diphospho-N-acetylenolpyruvyl-glucosamine. Journal of Biological Chemistry 243, 57705778.CrossRefGoogle Scholar
Ito, E. & Strominger, J. L. (1962 a). Enzymatic synthesis of the peptide in bacterial uridine nueleotides. I. Enzymatic addition of l-alanine, d-glutamic acid and l-lysine. Journal of Biological Chemistry 237, 26892695.CrossRefGoogle Scholar
Ito, E. & Strominger, J. L. (1962 b). Enzymatic synthesis of the peptide in bacterial uridine nueleotides. II. Enzymatic synthesis and addition of d-alanyl-d-alanine. Journal of Biological Chemistry 237, 26962703.CrossRefGoogle Scholar
Lugtenberg, E. J. J., Haas-Menger, L. de & Ruyters, W. H. M. (1972). Murein synthesis and identification of cell wall precursors of temperature-sensitive lysis mutants of Escherichia coli. Journal of Bacteriology 109, 326335.CrossRefGoogle ScholarPubMed
Matsuzawa, H., Matsuhashi, M., Oka, A. & Sugino, Y. (1969). Genetic and biochemical studies on cell wall peptidoglycan synthesis in Escherichia coli K-12. Biochemical and Biophysical Research Communications 36, 682689.CrossRefGoogle ScholarPubMed
Neidhardt, F. C. (1966). Roles of amino acid activating enzymes in cellular physiology. Bacteriological Reviews 30, 701718.CrossRefGoogle ScholarPubMed
Normark, S. (1970). Genetics of a chain-forming mutant of Escherichia coli. Genetical Research, Cambridge 16, 6378.CrossRefGoogle ScholarPubMed
Normark, S., Boman, H. G. & Matsson, E. (1969). A mutant of Escherichia coli K 12 with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics. Journal of Bacteriology 97, 13341342.CrossRefGoogle Scholar
Okada, T., Yanagisawa, K. & Ryan, F. J. (1960). Elective production of thymineless mutants. Nature, London 188, 340341.CrossRefGoogle Scholar
Putte, P. van de (1967). Herstel van stralingsschade in Escherichia coli. Thesis, University of Leiden.Google Scholar
Putte, P. van de, Dillewijn, J. van & Rörsch, A. (1964). The selection of mutants of Escherichia coli with impaired cell division, at elevated temperature. Mutation Research 1, 121128.CrossRefGoogle Scholar
Signer, E. R. (1966). Interaction of prophages at the att 80 site with the chromosome of Escherichia coli. Journal of Molecular Biology 15, 243255.CrossRefGoogle Scholar
Taylor, A. L. (1970). Current linkage map of Escherichia coli. Bacteriological Reviews 34, 155175.CrossRefGoogle ScholarPubMed
Wijsman, H. J. W. (1970). Een genetische studie over de celwandsynthese bij Escherichia coli. Thesis, University of Amsterdam.Google Scholar
Yura, T. & Wada, C. (1968). Phenethyl alcohol resistance in Escherichia coli. I. Resistance of strain C 600 and its relation to azide resistance. Genetics 59, 177190.CrossRefGoogle Scholar