Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T21:11:36.776Z Has data issue: false hasContentIssue false

Genetic latitudinal adaptation of Drosophila melanogaster: new discriminative biometrical traits between European and equatorial African populations

Published online by Cambridge University Press:  14 April 2009

J. David
Affiliation:
Laboratoire d'Entomologie expérimentale et de Génétique (associé au C.N.R.S.), Université Claude Bernard, 69621 Villeurbanne, France
C. Bocquet
Affiliation:
Laboratoire de Biologie et Génétique Evolvtives du C.N.R.S., 91190 Gif sur Yvette
M. de Scheemaeker-Louis
Affiliation:
Laboratoire de Biologie et Génétique Evolvtives du C.N.R.S., 91190 Gif sur Yvette
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Five biometrical traits (thorax length, wing length and width, sternopleural and abdominal chaetae numbers) were measured on 13 equatorial African strains and 30 French strains. In all cases highly significant differences were observed between the two geographic groups. These results are added to previously known variations concerning adult weight and ovariole number. In each place, the genetic particularities of the wild populations seem to be maintained by the selective pressure from environmental conditions, resulting in a homeostatic focusing of the best fitted average genotype. Analysis within each group showed that variations between strains were in most cases poorly or not correlated, so that partial or total genetic independence between the various traits measured seems likely.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

REFERENCES

Baud, H. T. (1975). A survey of iaozyme polymorphism in a Drosophila melanogaster natural population. Genetics 80, 761771.Google Scholar
Barnes, B. W. (1968). Stabilizing selection in Drosophila melanogaster. Heredity 23, 432442.CrossRefGoogle ScholarPubMed
Bocquet, C., David, J. & de Scheemaeker-Louis, M. (1973). Variabilité du nombre d'ovarioles des souches sauvages de Drosophila melanogaster conservées en laboratoire sans sélection volontaire. Archives de Zoologie expirimentale el générale 114, 475489.Google Scholar
Clayton, G. A., Knight, G. R., Morris, J. A. & Robertson, A. (1957). An experimental check on quantitative genetical theory. III. Correlated responses. Journal of Genetics 55, 171180.CrossRefGoogle Scholar
David, J. (1970). Le nombre d'ovarioles chez Drosophila melanogaster: relation avec la fécondité et valeur adaptative. Archives de Zoologie expérimentale et générale 111, 476489.Google Scholar
David, J. (1971). Particularités biométriques et faible potentiel reproduoteur des souches de Drosophila melanogaster provenant du Gabon. Comptes Rendus de l'académie des Sciences, Paris, 272, 21912194.Google Scholar
David, J. & Bocquet, C. (1972). Parallélisme évolutif chez deux espèces jumelles: les races gébgraphiques de France et d'afrique équatoriale de DrosophUa melanogaster et D. simulans. Archives de Zoologie expérimentale et générale 113, 451463.Google Scholar
David, J. & Bocquet, C. (1975 a). Evolution in a cosmopolitan species: genetic latitudinal clines in Drosophila melanogaster wild populations. Experientia 31, 164166.CrossRefGoogle Scholar
David, J. & Bocquet, C. (1975 b). Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature 257, 588590.CrossRefGoogle ScholarPubMed
David, J. & Clavel, M. F. (1965). Interaction entre le génotype et le milieu d'élevage. Conséquences sur les caractéristiques du développement de la drosophile. Bulletin biologique de la France et de la Belgique 99, 369378.Google Scholar
Dobzhansky, T. (1970). Genetics of the Evolutionary Process. New York: Columbia University Press, 505 pp.Google Scholar
Girard, P. & Palabost, L. (1976). Etude du polymorphisme enzymatique de 15 populations naturelles de Drosophila melanogaster. Archives de Zoologie expérimentale et générale 117, 4155.Google Scholar
Johnson, F. M. & Schaffer, H. E. (1973). Isozyme variability in species of the genus Drosophila. VII. Genotype-environment relationships in populations of D. melanogaster from the Eastern United States. Biochemical Genetics 10, 149163.CrossRefGoogle ScholarPubMed
Jones, L. P., Frankham, R. & Sheridan, A. K. (1969). Correlation between bristle systems in Drosophila melanogaster. Australian Journal of Biological Sciences 22, 14731484.CrossRefGoogle Scholar
Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314334.CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change. New York: Columbia University Press, 346 pp.Google Scholar
Mayr, E. (1966). Animal Species and Evolution. Cambridge, Mass.: Harvard University Press, 797 pp.Google Scholar
Miller, S., Pearcy, R. W. & Berger, E. (1975). Polymorphism at the glycero-phosphate dehydrogenase locus in Drosophila melanogaster. I. Properties of adult allozymes. Biochemical Genetics 13, 175188.CrossRefGoogle Scholar
Misra, R. K. & Reeve, E. C. R. (1964). Clines in body dimensions in populations of Drosophila subobscura. Genetical Research 5, 240258.CrossRefGoogle Scholar
Prevosti, A. (1955). Geographical variability in quantitative traits in populations of D. subobscura. Cold Spring Harbor Symposium on Quantitative Biology 20, 294299.CrossRefGoogle Scholar
Robertson, F. W. (1954). Studies in quantitative inheritance. V. Chromosome analysis of crosses between selected and unselected lines of different body size in Drosophila melanogaster. Journal of Genetics 52, 494520.CrossRefGoogle Scholar
Robertson, F. W. & Reeve, E. C. R. (1952). Studies on quantitative inheritance. I. The effects of selection on wing and thorax length in Drosophila melanogaster. Journal of Genetics 50, 414448.CrossRefGoogle Scholar
Sheridan, A. K., Frankham, R., Jones, L. P., Rathie, K. A. & Barker, J. S. F. (1968). Partitioning of variance and estimation of genetic parameters for various bristle number characters of Drosophila melanogaster. Theoretical and Applied Genetics 38, 179187.CrossRefGoogle Scholar
Stalker, H. D. & Carson, H. L. (1947). Morphological variation in natural populations of D. robusta. Evolution 1, 237248.Google Scholar
Taylor, C. E. & Mitton, J. B. (1973). Multivariate analysis of genetic variation. Genetics 76, 575585.CrossRefGoogle Scholar
Tantawy, A. O. (1956). Response to selection and changes of genetic variability for wing length in Drosophila melanogaster with brother–sister matings. Genetica 28, 177200.CrossRefGoogle ScholarPubMed
Tantawy, A. O. & Tayel, A. A. (1970). Studies on natural populations of Drosophila. X. Effects of disruptive and stabilizing selection on wing length and the correlated response in Drosophila melanogaster. Genetics 65, 121132.CrossRefGoogle ScholarPubMed
Vigue, C. L. & Johnson, F. M. (1973). Isozyme variability in species of the genus Drosophila. VI. Frequency–property–environment relationships of allelic alcohol dehydrogenase in D. melanogaster. Biochemical Genetics 9, 213.CrossRefGoogle Scholar