Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:23:19.520Z Has data issue: false hasContentIssue false

Genetic fine-structure of the GA-1 locus in the higher plant Arabidopsis thaliana (L.) Heynh

Published online by Cambridge University Press:  14 April 2009

M. Koornneef
Affiliation:
Department of Genetics, Agricultural University, Generaal Foulkesweg 53 6703 BM Wageningen, The Netherlands
J. Van Eden
Affiliation:
Department of Genetics, Agricultural University, Generaal Foulkesweg 53 6703 BM Wageningen, The Netherlands
C. J. Hanhart
Affiliation:
Department of Genetics, Agricultural University, Generaal Foulkesweg 53 6703 BM Wageningen, The Netherlands
A. M. M. De Jongh
Affiliation:
Department of Genetics, Agricultural University, Generaal Foulkesweg 53 6703 BM Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Non-germinating gibberellin (GA) responsive mutants are a powerful tool to study genetic fine structure in higher plants. Nine alleles (EMS-and fast neutron-induced) of the ga-1 locus of Arabidopsis thaliana were tested in a complete half-diallel. No wild type ‘recombinants’ were found in the selfed progeny of 9 homoallelic combinations (in total 3 × 105 plants); in the progenies from the 36 selfed hetero allelics the wild type frequency ranged from zero to 6·6 × 10−4. These frequencies allowed the construction of an internally consistent map for five different sites representing eight alleles. The ninth allele covered three sites and thus behaved like an intragenic deletion. The estimate of the total genetic length of the ga-1 locus was 0·07 cM. The order of the sites was also clearly reflected by the association with proximal outside markers. On the assumption that wild type gametes predominantly arise from reciprocal events, it was shown that a cross-over within the ga-1 locus leads to positive interference in the adjacent region.

The results are discussed with respect to the mutagen used, the frequencies found in other plant and Drosophila genes, and the possible occurrence of gene conversion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Amano, E. (1968). Comparison of ethylmethanesulphonate and radiation-induced waxy mutants in maize. Mutation Research 5, 4146.CrossRefGoogle Scholar
Amano, E. & Smith, H. H. (1965). Mutations induced by ethylmethanesulphonate in maize. Mutation Research 2, 344351.CrossRefGoogle Scholar
Carlson, E. A. (1959). Comparative genetics of complex loci. The Quarterley Review of Biology 34, 3367.Google Scholar
Carlson, P. S. (1971). A genetic analysis of the rudimentary locus of Drosophila melanogaster. Genetical Research 17, 5381.CrossRefGoogle Scholar
Catcheside, D. G. (1977). The Genetics of Recombination, pp. 172. London: Edward Arnold.Google Scholar
Chovnick, A., Ballantyne, G. H. & Holm, D. G. (1971). Studies on gene conversion and its relationship to linked exchange in Drosophila melanogaster. Genetics 69, 179209.CrossRefGoogle ScholarPubMed
Feenstra, W. J. (1965). An emasculation technique. Arabidopsis Information Service 2, 34.Google Scholar
Fincham, J. R. S., Day, P. R. & Radford, A. (1979). Fungal Genetics, pp. 197216. Oxford, London, Edinburgh, Melbourne: Blackwell.Google Scholar
Freeling, M. (1976). Intragenic recombination in maize: pollen analysis methods and the effect of parental Adh1 + isoalleles. Genetics 83, 707717.Google Scholar
Freeling, M. (1978). Allelic variation at the level of intragenic recombination. Genetics 89, 211224.CrossRefGoogle ScholarPubMed
Grace, D. (1980). Genetic analysis of the dumpy complex locus in Drosophila melanogaster: complementation, fine structure and function. Genetics 94, 647662.CrossRefGoogle ScholarPubMed
Green, M. M. & Green, K. C. (1956). A cytogenetic analysis of the lozenge pseudoalleles in Drosophila. Zeitschrift für indukt. Abstammungs- und Vererbungslehre 87, 708721.Google ScholarPubMed
Hilliker, A. J. & Chovnick, A. (1981). Further observations on intragenic recombination in Drosophila melanogaster. Genetical Research 38, 281296.CrossRefGoogle ScholarPubMed
Holliday, R. (1964). A mechanism for gene conversion in fungi. Genetical Research 5, 282304.CrossRefGoogle Scholar
Jöroensen, J. H. & Jensen, H. P. (1979). Interallelic recombination in the ml-o locus in barley. Barley Genetics Newsletter 9, 3739.Google Scholar
Koornneef, M. (1979). Intragenic recombination within the ga-1 locus of Arabidopsis thaliana. Arabidopsis Information Service 16, 4146.Google Scholar
Koornneef, M., De Bruine, J. H. & Goetssch, P. (1980). A provisional map of chromosome 4 of Arabidopsis. Arabidopsis Information Service 17, 1118.Google Scholar
Koornneef, M., Dellaert, L. W. M. & Van Dek Veen, J. H. (1982 a). EMS-and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutation Research 93, 109123.Google Scholar
Koornneef, M. & Van Der Veen, J. H. (1980). Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theoretical & Applied Genetics 58, 257263.CrossRefGoogle ScholarPubMed
Koornneef, M., Van Der Veen, J. H., Spruit, C. J. P. & Karssen, C. M. (1981). Isolation and use of mutants with an altered germination behaviour in Arabidopsis thaliana and tomato. In Induced Mutations: a Tool in Plant Research (Vienna, IAEA), 227232.Google Scholar
Nelson, O. E. (1958). Intracistron recombination in the Wx/wx region of maize. Science 130, 794795.CrossRefGoogle Scholar
Nelson, O. E. (1962). The waxy locus in maize. I. Intralocus recombination frequency estimates by pollen and by conventional analyses. Genetics 47, 737742.CrossRefGoogle Scholar
Nelson, O. E. (1968). The waxy locus in maize II. The location of the controlling element alleles. Genetics 60, 507524.Google Scholar
Nelson, O. E. (1975). The waxy locus in maize. III. Effect of structural heterozygosity on intragenic recombination and flanking marker assortment. Genetics 79, 3144.CrossRefGoogle ScholarPubMed
Nilan, R. A., Kleinhofs, A. & Warner, R. L. (1981). Use of induced mutants of genes controlling nitrate reductase, starch deposition, and anthocyanin synthesis in barley. In Induced Mutations: a Tool in Plant Research (Vienna, IAEA), pp. 183200.Google Scholar
Oostindier-Braaksma, F. J. & Feenstra, W. J. (1973). Isolation and characterization of chlorate-resistant mutants in Arabidopsis thaliana. Mutation Research 9, 165185.Google Scholar
Rosichan, J., Nilan, R. A., Arenaz, P. & Kleinhofs, A. (1979). Intragenic recombination at the waxy locus in Hordeum vulgare. Barley Genetics Newsletter 9, 7985.Google Scholar
Salamini, F. & Lorenzoni, C. (1970). Genetical analysis of glossy mutants of Maize. III. Intracistron recombination and high negative interference. Molecular and General Genetics 108, 225232.CrossRefGoogle Scholar
Wettstein-Knowles, P. Van & Søgaard, B. (1980). The cer-cqu region in barley: gene cluster or multifunctional gene. Carlsberg Research Communications 45, 125141.CrossRefGoogle Scholar