Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T18:07:02.346Z Has data issue: false hasContentIssue false

Genetic evidence for a polycistronic unit of transcription in the complex locus ‘14’ in Podospora anserina II. Genetic analysis of informational suppressors

Published online by Cambridge University Press:  14 April 2009

Marguerite Picard
Affiliation:
Laboratoire de Génétique, Université Paris XI, Centre d'Orsay-91 et Laboratoire associé no. 86 du Centre National de la Recherche Scientifique
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Forty-one suppressors obtained after NG and EMS mutagenesis of two ‘polar’ mutants of segment ‘29’ in Podospora anserina were genetically analysed. Three classes of suppressor could be distinguished on spectrum pattern criteria. One representative suppressor of each class was demonstrated to be non-gene specific. The class I suppressor was dominant and only suppressed polar mutants in segment ‘29’ and non-ICR-induced ones in genes where polarity cannot be determined. Class II and III suppressors were partially dominant and they suppressed polar, non-polar and even ICR-induced mutants. The difference between classes II and III seems to be only quantitative. According to whether class II and III suppressors are considered strongly or weakly allele-specific, two hypotheses are considered. First, tRNAs could be involved in all three classes of suppression: class I would be nonsense-specific and classes II and III would be nonsense-missense suppressors. Secondly, tRNA could be involved only in class I suppression, while ribosomal ambiguity could be responsible for class II and III suppression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

References

REFERENCES

Atkins, J. F., Elseviers, D. & Gorini, L. (1972). Low activity of β. galactosidase in frame-shift mutants of Escherichia coli. Proceedings of National Academy of Sciences of the U.S.A. 69, 11921195.CrossRefGoogle Scholar
Biswas, D. K. & Gorini, L. (1972). Restriction, de-restriction and mistranslation in missense suppression. Ribosomal discrimination of transfer RNA's. Journal of Molecular Biology 64, 119134.CrossRefGoogle ScholarPubMed
Capecchi, M. R. & Gussin, G. N. (1965). Suppression in vitro: identification of a serine s-RNA as a nonsense suppressor. Science 149, 417.CrossRefGoogle Scholar
Carbon, J., Berg, P. & Yanofsky, C. (1966). Missense suppression due to a genetically altered t-RNA. Cold Spring Harbor Symposia on quantitative Biology 31, 487497.CrossRefGoogle Scholar
Crick, F. H. C. (1966). Codon-anticodon pairing: the wobble hypothesis. Journal of Molecular Biology 19, 548555.CrossRefGoogle ScholarPubMed
Davies, J., Jones, D. S. & Khorana, H. G. (1966). A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nueleotides in alternating sequences as templates. Journal of Molecular Biology 18, 4857.CrossRefGoogle ScholarPubMed
Esser, K. (1969). An introduction to Podospora anserina. Neurospora Newsletter 15, 2731.Google Scholar
Garen, A. (1968). Sense and nonsense in the genetic code. Science 160, 149159.CrossRefGoogle ScholarPubMed
Gilmore, R. A. & Mortimer, R. K. (1966). Supersuppressor mutations in Saccharomyces cerevisiae. Journal of Molecular Biology 20, 307311.CrossRefGoogle ScholarPubMed
Gorini, L. (1970). Informational suppression. Annual Review of Microbiology 24, 107134.Google Scholar
Hawthorne, D. C. (1969 a). The selection of nonsense suppressors in yeast. Mutation Research 7, 187197.CrossRefGoogle ScholarPubMed
Hawthorne, D. C. (1969 b). Identification of nonsense codons in yeast. Journal of Molecular Biology 43, 7175.CrossRefGoogle ScholarPubMed
Laycock, D. G. & Hunt, J. A. (1969). Synthesis of rabbit globin by a bacterial cell free system. Nature 221, 11181122.CrossRefGoogle ScholarPubMed
Magni, G. B., Von Borstel, R. C. & Steinrerg, C. M. (1966). Supersuppressors as addition-deletion mutations. Journal of Molecular Biology 16, 568570.CrossRefGoogle ScholarPubMed
Malling, H. V. & De Serres, F. J. (1968). Identification of genetic alterations induced by ethylmethanesulfonate in Neurospora crassa. Mutation Research 6, 181193.CrossRefGoogle Scholar
Malling, H. V. & De Serres, F. J. (1970). Genetic effects of N-methyl-N′-nitro-N-nitroso-guanidine in Neurospora crassa. Molecular and general Genetics 106, 195207.CrossRefGoogle Scholar
Marshall, R. E., Caskey, C. T. & Nirenberg, M. W. (1967). Fine structure of RNA codewords recognized by bacterial, amphibian and mammalian transfer RNA. Science 155, 820826.CrossRefGoogle ScholarPubMed
Model, P., Webster, R. E. & Zinder, N. D. (1969). The UGA codon in vitro: chain termination and suppression. Journal of Molecular Biology 43, 177190.CrossRefGoogle Scholar
Picard, M. (1971). Genetic evidences for a polycistronic unit of transcription in the complex locus ‘14’ in Podospora anserina. I. Genetic and complementation maps. Molecular and General Genetics 111, 3550.CrossRefGoogle ScholarPubMed
Riddle, D. L. & Roth, J. R. (1970). Suppressors of frameshift mutations in Salmonella typhimurium. Journal of Molecular Biology 54, 131144.CrossRefGoogle ScholarPubMed
Rizet, G. & Engelmann, C. (1949). Contribution à l'étude d'un ascomycète tétrasporé: Podospora anserina. Revue de cytologie et de Biologie végétale 2, 202304.Google Scholar
Rosset, R. & Gorini, L. (1969). A ribosomal ambiguity mutation. Journal of Molecular Biology 39, 95112.CrossRefGoogle ScholarPubMed
Seale, T. W. (1971). Induction of supersuppressors in Neurospora. Genetics 68, 60 (suppl.).Google Scholar
Simonet, J. M. (1971). Etude de mutations affectant la meoise chez le Podospora anserina. Influence de certains mutants sur le taux des mutations spontanées et sur la recombinaison. Thèse de 3ème cycle, Orsay.Google Scholar
Simonet, J. M. & Zickler, D. (1972). Mutations affecting meiosis in Podospora anserina. I. Cytological studies. Chromosoma 37, 327351.CrossRefGoogle ScholarPubMed
Toure, B. & Picard, M. (1972). Consequences of double cross-over detections on the functional interpretation of segment ‘29’ in Podospora anserina, Genetical Research 19, 313319.CrossRefGoogle Scholar
Ycas, M. (1969). The Biological Code North-Holland Publishing Co.Google Scholar
Yourno, J., Barr, D. & Tanemura, Sh. (1969). Externally suppressible frameshift mutant of Salmonella typhimurium. Journal of Bacteriology 100, 453459.CrossRefGoogle ScholarPubMed
Zimmermann, R. A., Gavin, R. T. & Gorini, L. (1971). Alteration of a 30 S-ribosomal protein accompanying the ram mutation in Escherichia coli. Proceedings of National Academy of Sciences of the U.S.A. Washington 68, 22632267.CrossRefGoogle Scholar