Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T00:42:33.475Z Has data issue: false hasContentIssue false

Genetic effects on susceptibility to histidine induced teratogenesis in the mouse

Published online by Cambridge University Press:  14 April 2009

Julie E. Burns
Affiliation:
Department of Genetics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, U.K.
Henrik Kacser
Affiliation:
Department of Genetics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, U.K.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the mouse histidinaemia has a teratogenic effect. Animals subjected to high levels of histidine in utero may develop inner ear and behavioural abnormalities typical of the ‘shaker–waltzer’ syndrome. Selection procedures for abnormalities and relaxation of selection have resulted in two histidinaemic strains: the Cambridge strain in which abnormalities occur in over 80% of animals, and the Edinburgh strain in which the penetrance of abnormal behaviour has declined to about 1%. Breeding experiments suggest that the differences are largely due to differences in the genetic backgrounds which modify foetal susceptibilities to the teratogenic effects of high histidine levels. High susceptibility appears to be dominant over low susceptibility in the present strains. There appears to be no interaction of maternal histidinaemia with the dreher mutation which is considered to induce inner ear malformation as a result of an early neural tube abnormality.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Bulfield, G. & Kacser, H. (1974). Histidinaemia in mouse and man. Archives of Disease in Childhood 49, 545552.Google Scholar
Coulombe, J. T., Kammerer, B. L., Levy, H. L., Hirsch, B. Z. & Scriver, C. R. (1983). Histidinaemia. III. Impact: a prospective study. Journal of Inherited Metabolic Disease 6, 5861.CrossRefGoogle ScholarPubMed
Deol, M. S. (1964). The origin of the abnormalities of the inner ear in dreher mice. Journal of Embryology and experimental Morphology 12, 727733.Google ScholarPubMed
Deol, M. S. (1966 a). Influence of the neural tube on the differentiation of the inner ear in the mammalian embryo. Nature 209, 219220.CrossRefGoogle ScholarPubMed
Deol, M. S. (1966 b). The probable mode of gene action in the circling mutants of the mouse. Genetical Research 7, 363371.CrossRefGoogle ScholarPubMed
Deol, M. S. (1968). Inherited diseases of the inner ear in man in the light of studies on the mouse. Journal of Medical Genetics 5, 137158.Google Scholar
Deol, M. S. (1976). Deficiencies of the inner ear in the mouse and their origin. In Colloques Internationaux C.N.R.S. No. 266– Mécanismes de la Rudimentation des Organes chez les Embryone de Verrèbres. pp. 163171.Google Scholar
Falconer, D. S. & Sierts-Roth, U. (1951). Dreher, ein neues Gen der Tanzmaus-gruppe bei der Hausmaus. Zeitschrft für induktive Abstammungs-und Vererbungslehre 84, 7173.Google Scholar
Fischer, H. (1956). Morphologische und mikroskopisch-anatomische untersuchungen am Innenohr eines Stammes spontanmutierter Hausmäuse (dreher). Zeitschrft für mikroskopisch-anatomische Forschung 62, 348406.Google Scholar
Kacser, H., Bulfield, G. & Wallace, M. E. (1973). Histidinaemic mutant in the mouse. Nature 244, 7779.Google Scholar
Kacser, H., Bulfield, G. & Wright, A. (1979). The biochemistry and genetics of histidinaemia in the mouse. In Models for the Study of Inborn Errors of Metabolism (ed. Hommes, F. A.), pp. 3343. North Holland Biomedical Press: Elsevier.Google Scholar
Kacser, H., Mya Mya, K. & Bulfield, G. (1979). Endogenous teratogenesis in maternal histidinaemia. In Models for the Study of Inborn Errors of Metabolism (ed. Hommes, F. A.), pp. 4353. North Holland Biomedical Press: Elsevier.Google Scholar
Kacser, H., Mya Mya, K., Duncker, M., Wright, A. F., Bulfield, G., McLaren, A. & Lyon, M. F. (1977). Maternal histidine metabolism and its effect on foetal development in the mouse. Nature 265, 263266.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1958). Twirler: A mutant affecting the inner ear of the house mouse. Journal of Embryology and experimental Morphology 6, 105116.Google Scholar
Mya Mya, K. (1978). Inner ear development in maternal histidinaemia in the mouse. Ph.D. Thesis, University of Edinburgh.Google Scholar
Rosenmann, A., Scriver, C. R., Clow, C. L. & Levy, H. L. (1983). Histidinaemia. II. Impact; a retrospective study. Journal of Inherited Metabolic Disease 6, 5457.Google Scholar
Scriver, C. R. & Levy, H. L. (1983). Histidinaemia. I. Reconciling retrospective and prospective findings. Journal of Inherited Metabolic Disease 6, 5153.CrossRefGoogle ScholarPubMed
Wallace, M. E. (1970). Mouse Newsletter 42, 20.Google Scholar
Wallace, M. E. (1973). Mouse Newsletter 48, 25.Google Scholar
Wright, A. F., Bulfield, G., Arfin, S. M. & Kacser, H. (1982). Comparison of the properties of histidine ammonia-lyase in normal and histidinaemic mutant mice. Biochemical Genetics 20, 245263.CrossRefGoogle Scholar