Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T20:12:43.511Z Has data issue: false hasContentIssue false

Genetic control of flagellar structure in Chlamydomonas reinhardii

Published online by Cambridge University Press:  14 April 2009

J. R. Warr
Affiliation:
Department of Biophysics and Medical Research Council Biophysics Research Unit, University of London, King's College, 26–29 Drury Lane, London, W.C.2
A. McVittie
Affiliation:
Department of Biophysics and Medical Research Council Biophysics Research Unit, University of London, King's College, 26–29 Drury Lane, London, W.C.2
John Randall
Affiliation:
Department of Biophysics and Medical Research Council Biophysics Research Unit, University of London, King's College, 26–29 Drury Lane, London, W.C.2
J. M. Hopkins
Affiliation:
Department of Biophysics and Medical Research Council Biophysics Research Unit, University of London, King's College, 26–29 Drury Lane, London, W.C.2
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Seventeen non-motile strains of Chlamydomonas reinhardii isolated by Dr Lewin and thirty-six newly isolated strains have been examined in the electron microscope for structural abnormalities of the flagella. Fourteen of them have straight, paralysed flagella in which the central fibres are replaced by an irregular core of disorganized material. The fourteen mutations map at four unlinked loci. Some of them are leaky; light and electron microscope observations on leakiness are described. In the former case leakiness is measured by the proportion of motile cells, and in the latter by the proportion of intact centre fibres seen in transverse sections. The degree of leakiness is to some extent characteristic of particular loci.

A partial suppressor of some of these mutations has been isolated which acts on all the mutant alleles at two loci and to a much lesser extent on four out of five alleles at a third locus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Afzelius, B. A. (1962). The contractile apparatus in some invertebrate muscles and spermatozoa. V Int. Congr. Electron Microsc. 2, M-l.CrossRefGoogle Scholar
Afzelius, B. A. (1963). Cilia and flagella that do not conform to the 9 + 2 pattern. 1. Aberrant members within normal populations. J. Ultrastruct. Res. 9, 381392.CrossRefGoogle Scholar
Alexander, J. (1965). Serological studies on the ciliary proteins of Tetrahymena pyriformis. II Int. Congr. Protozool., Abstracts. Published by Excerpta Medica Foundation, Amsterdam.Google Scholar
Barnes, B. G. (1961). Ciliated secretory cells in the pars distalis of the mouse hypophysis. J. Ultrastruct. Res. 5, 453467.CrossRefGoogle ScholarPubMed
Brenner, S., Stretton, A. O. W. & Kaplan, S. (1965). The genetic code: the ‘nonsense’ triplets for chain termination and their suppression. Nature Lond. 206, 994998.CrossRefGoogle ScholarPubMed
Brody, S. & Yanofsky, C. (1963). Suppressor gene alteration of protein primary structure. Proc. natn. Acad. Sci. U.S.A. 50, 916.CrossRefGoogle ScholarPubMed
Brokaw, C. V. (1960). Decreased adenosine triphosphatase activity of flagella from a paralysed mutant of Chlamydomonas moewusii. Expl Cell Res. 19, 430432.CrossRefGoogle Scholar
Capecchi, M. R. & Gussin, G. N. (1965). Suppression in vitro: identification of a serine-sRNA as a ‘nonsense’ suppressor. Science N.Y. 149, 417422.CrossRefGoogle ScholarPubMed
Dorn, G. (1965). Genetic analysis of the phosphatases in Aspergillus nidulans. Genet. Res. 6, 1326.CrossRefGoogle ScholarPubMed
Ebersold, W. T. & Levine, R. P. (1959). A genetic analysis of linkage group 1 of Chlamydomonas reinhardii. Z. VererbLehre, 90, 7482.Google Scholar
Ebersold, W. T., Levine, R. P., Levine, E. E. & Olmsted, M. A. (1962). Linkage maps in Chlamydomonas reinhardii. Genetics, 47, 531543.CrossRefGoogle Scholar
Favre, R., Boy De La Tour, E., Segrè;, N. & Kellenberger, E. (1965). Studies on the morphopoiesis of the head of phage T-even. I. Morphological, immunological and genetic characterisation of polyheads. J. Ultrastruct. Res. 13, 318342.CrossRefGoogle ScholarPubMed
Fawcett, D. (1961). Cilia and flagella. In The Cell (Brachet, V. & Mirsky, A. E., eds.), vol. II, pp. 217297. New York: Academic Press.CrossRefGoogle Scholar
Gibbons, I. R. & Grimstone, A. V. (1960). On flagellar structure in certain flagellates. J. biophys. biochem. Cytol. 7, 697716.CrossRefGoogle ScholarPubMed
Gibbs, S. P., Lewin, R. A. & Philpott, D. E. (1958). The fine structure of the flagellar apparatus of Chlamydomonas moewusii. Expl Cell Res. 15, 619622.CrossRefGoogle ScholarPubMed
Gillham, N. W. (1963). Transmission and segregation of a non-chromosomal factor controlling streptomycin resistance in diploid Chlamydomonas. Nature Lond. 200, 294CrossRefGoogle ScholarPubMed
Gillham, N. W. (1965). Induction of chromosomal and non-chromosomal mutations in Chlamydomonas reinhardii with N-methyl-N'-nitro-N-nitrosoguanidine. Genetics, 52, 529537.CrossRefGoogle Scholar
Horowitz, N. H., Fling, M., Macleod, H. & Sueoka, N. (1961). A genetic study of two new structural forms of tyrosinase in Neurospora. Genetics, 46, 10151024.CrossRefGoogle ScholarPubMed
Kerridge, D., Horne, R. W. & Glauert, A. M. (1962). Structural components of flagella from Salmonella typhimurium. J. molec. Biol. 4, 227238.CrossRefGoogle ScholarPubMed
Levine, R. P. & Ebersold, W. T. (1960). The genetics and cytology of Chlamydomonas. A. Rev. Microbiol. 14, 197216.CrossRefGoogle ScholarPubMed
Lewin, R. A. (1952). Ultraviolet induced mutations in Chlamydomonas moewusii Gerloff. J. gen. Microbiol. 6, 233248.CrossRefGoogle ScholarPubMed
Lewin, R. A. (1954). Mutants of Chlamydomonas moewusii with impaired motility. J. gen. Microbiol. 11, 358363.CrossRefGoogle ScholarPubMed
Lewin, R. A. (1960). A device for obtaining mutants with impaired motility. Can. J. Microbiol. 6, 2125.CrossRefGoogle ScholarPubMed
Lowy, J. & Hanson, J. (1965). Electron microscope studies of bacterial flagella. J. molec. Biol. 11, 293313.CrossRefGoogle ScholarPubMed
McDougall, K. J. & Woodward, V. W. (1965). Suppression of arginine and pyrimidine- requiring mutants of Neurospora crassa. Genetics, 52, 397406.CrossRefGoogle ScholarPubMed
Monod, J., Changeux, J. P. & Jacob, F. (1963). Allosteric proteins and cellular control systems. J. molec. Biol. 6, 306329.CrossRefGoogle ScholarPubMed
Nakai, S. & Saeki, T. (1964). Induction of mutation by photodynamic action in Escherichia coli. Genet. Res. 5, 158161.CrossRefGoogle Scholar
Perkins, D. (1953). Tetrads and crossing over. J. cell comp. Physiol. 45, suppl. 2, 119149.Google Scholar
Pitelka, D. R. (1962). Observations on normal and abnormal cilia in Paramecium. V Int. Congr. Electron Microsc. 2, M-7.CrossRefGoogle Scholar
Randall, J. T. & Disbrey, C. (1965). Evidence for the presence of DNA at basal body sites in Tetrahymena pyriformis. Proc. R. Soc. B, 162, 473491.Google ScholarPubMed
Randall, J. T., Warr, J. R., Hopkins, J. M. & McVittie, A. (1964). A single gene mutation of Chlamydomonas reinhardii affecting motility: a genetic and electron microscope study. Nature Lond. 203, 912914.CrossRefGoogle ScholarPubMed
Ritchie, D. A. (1964). Mutagenesis with light and proflavine in phage T4. Genet. Res. 5, 168169.CrossRefGoogle Scholar
Ronkin, R. R. & Buretz, K. M. (1960). Sodium and potassium in normal and paralysed Chlamydomonas. J. Protozool. 7, 109114.CrossRefGoogle Scholar
Sager, R. (1955). Inheritance in the green alga Chlamydomonas reinhardii. Genetics, 40, 476489.CrossRefGoogle Scholar
Sager, R. (1962). Streptomycin as a mutagen for non-chromosomal genes. Proc. natn. Acad. Sci. U.S.A. 48, 20182026.CrossRefGoogle Scholar
Sager, R. (1965). On non-chromosomal heredity in microorganisms. In Function and Structure in Microorganisms (Pollock, M. R. & Richmond, M. H., eds.), Symp. Soc. gen. Microbiol. 15, 324342. Cambridge: University Press.Google Scholar
Sager, R. & Granick, S. (1954). Nutritional control of sexuality in Chlamydomonas reinhardii. J. gen. Physiol. 37, 729742.CrossRefGoogle Scholar
Satir, P. (1962). On the evolutionary stability of the 9 + 2 pattern. J. Cell Biol. 12, 181184.CrossRefGoogle ScholarPubMed
Suskind, S. R. & Kurek, L. I. (1959). On a mechanism of suppressor gene regulation of tryptophan synthetase activity in Neurospora crassa. Proc. natn. Acad. Sci. U.S.A. 45, 193196.CrossRefGoogle ScholarPubMed
Watson, M. & Hynes, R. (1965). Starch gel electrophoresis of the fibrillar proteins of the cilia of Tetrahymena pyriformis. Expl Cell Res. (in press).Google Scholar