Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T15:37:37.042Z Has data issue: false hasContentIssue false

Genetic and environmental modification of gene expression in the brlA12 variegated position effect mutant of Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

A. J. Clutterbuck
Affiliation:
Department of Genetics, University of Glasgow, Glasgow G11 5JS, Scotland
D. H. Spathas
Affiliation:
Department of Genetics, University of Glasgow, Glasgow G11 5JS, Scotland
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The brlA12 variegated position effect mutant is particularly suited for tests of environmental and genetic influences on variegation, but out of a large number of substances added to the medium, only salts at high concentrations and methylamine significantly increased expression of this gene. Medium shifting experiments showed that brlA12 activity could be switched on late, but once active, was rarely switched off again during conidiation. Separate brlA12 clones in heterokaryons were activated independently. Some brlA12-specific suppressor mutants, including those at loci giving almost complete suppression, have been studied. One class of suppressors also confers inability to utilize galactose as carbon source and comparison with other, pre-existing mutants showed that the brlA12 phenotype was either suppressed or enhanced by mutants with complex phenotypes involving galactose utilization, molybdate resistance, acid phosphatase production and sulphur metabolism. Tests for the involvement of DNA methylation in brlA12 expression gave negative results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Arst, H. N. Jr. (1968). Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans. Nature 219, 268270.Google Scholar
Arst, H. N. Jr. (1981). Aspects of the control of gene expression in fungi. In Genetics as a tool in Microbiology; 31st Symposium of the Society for General Microbiology (ed. Glover, S. W. and Hopwood, D. A.), pp. 131160. Cambridge University Press.Google Scholar
Arst, H. N. Jr. & Cove, D. J. (1970). Molybdate metabolism in Aspergillus nidulans. II. Mutations affecting phosphatase activity or galactose utilization. Molecular and General Genetics 108, 146153.Google Scholar
Arst, H. N. Jr., MacDonald, D. W. & Cove, D. J. (1970). Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Molecular and General Genetics 108, 129145.Google Scholar
Bachrach, U. (1981). Oxidation of polyamines and diamines. In Polyamines in Biology and Medicine (ed. Morris, D. R. and Maston, L. J.), pp. 151168. New York: Dekkar.Google Scholar
Baker, W. K. (1968). Position effect variegation. Advances in Genetics 14, 133169.CrossRefGoogle ScholarPubMed
Burr, K. W., Roper, J. A. & Relton, J. (1982). Modification of chromosome instability in Aspergillus nidulans. Journal of General Microbiology 128, 28992907.Google ScholarPubMed
Candido, E. P. M., Reeves, R. & Davie, J. R. (1978). Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105113.CrossRefGoogle ScholarPubMed
Cattanach, B. M. (1974). Position effect variegation in the mouse. Genetical Research 23, 291306.CrossRefGoogle ScholarPubMed
Clutterbuck, A. J. (1969 a). A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63, 317327.Google Scholar
Clutterbuck, A. J. (1969 b). Cell volume per nucleus in haploid and diploid strains of Aspergillus nidulans. Journal of General Microbiology 55, 291299.Google Scholar
Clutterbuck, A. J. (1970). A variegated position effect in Aspergillus nidulans. Genetical Research 16, 303316.Google Scholar
Clutterbuck, A. J. (1974). Aspergillus nidulans. In Handbook of Genetics 1. Bacteria, bacterio-phages and fungi (ed. King, R. C.), pp. 447510. New York: Plenum Press.CrossRefGoogle Scholar
Clutterbuck, A. J. (1977). The genetics of conidiation in Aspergillus nidulans. In Genetics and Physiology of Aspergillus (ed. Smith, J. E. and Pateman, J. A.), pp. 305317. London: Academic Press.Google Scholar
Clutterbuck, A. J. (1982). Aspergillus nidulans. Genetic Maps 2, 208217.Google Scholar
Cove, D. J. (1979). Genetic studies of nitrate assimilation in Aspergillus nidulans. Biological Reviews 54, 291327.Google Scholar
Dorn, G. (1965). Genetic analysis of the phosphatases in Aspergillus nidulans. Genetical Research 6, 1326.CrossRefGoogle ScholarPubMed
Dorn, G. (1970). Genetic and morphological properties of undifferentiated and invasive variants of Aspergillus nidulans. Genetics 66, 267279.Google Scholar
Folk, J. E. & Finlayson, J. S. (1977). The ε-(γ-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Advances in Protein Chemistry 31, 1133.Google Scholar
Gerber, N. N. (1975). Prodigiosin-like pigments. Critical Reviews in Microbiology 3, 469485.CrossRefGoogle ScholarPubMed
Hannah-Alava, A. (1971). Cytogenetics of nucleolus-transpositions in Drosophila melanogaster. Molecular and General Genetics 113, 191203.Google Scholar
Hocking, A. D. & Norton, R. S. (1983). Natural-abundance 13C nuclear magnetic resonance studies on the internal solutes of xerophytic fungi. Journal of General Microbiology 129, 29152925.Google Scholar
Holliday, R. & Pugh, J. E. (1975). DNA modification mechanisms and gene activity during development. Science 187, 226232.CrossRefGoogle ScholarPubMed
Lewis, E. B. (1950). The phenomenon of position effect. Advances in Genetics 3, 73115.CrossRefGoogle ScholarPubMed
Luard, E. J. (1982). Accumulation of intracellular solutes by two filamentous fungi in response to growth at low steady state osmotic potential. Journal of General Microbiology 128, 25632574.Google Scholar
Jansen, G. J. O. (1972). Mutator activity in uvs mutants of Aspergillus nidulans. Molecular and General Genetics 116, 4750.CrossRefGoogle ScholarPubMed
Mottus, R., Reeves, R. & Grigliatti, T. A. (1980). Butyrate suppression of position-effect variegation in Drosophila melanogaster. Molecular on General Genetics 178, 465469.Google Scholar
Novitski, E., Grace, D., Strommen, C. & Puro, J. (1981). Terminal chromosome attachments. American Journal of Human Genetics 33, 5560.Google Scholar
Perkins, D. D. & Barry, E. G. (1977). The cytogenetics of Neurospora. Advances in Genetics 19, 133285.Google Scholar
Pieniążek, N. J., Kowalska, I. M. & Stępień, P. P. (1973). Deficiency in methionine adenosyl transferase resulting in limited repressibility of methionine biosynthetic enzymes in Aspergillus nidulans. Molecular and General Genetics 126, 367374.Google Scholar
Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. & Bufton, A. W. J. (1953). The Genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.CrossRefGoogle ScholarPubMed
Razin, A. & Riggs, A. D. (1980). DNA methylation and gene function. Science 210, 604610.CrossRefGoogle ScholarPubMed
Riggs, A. D. (1975). X inactivation, differentiation and DNA methylation. Cytogenetics & Cell Genetics 14, 925.Google Scholar
Roberts, C. F. (1963). The genetic analysis of carbohydrate utilization in Aspergillus nidulans. Journal of General Microbiology 31, 4548.Google Scholar
Roberts, C. F. (1970). Enzyme lesions in galactose non-utilizing mutants of Aspergillus nidulans. Biochimica et Biophysica Acta 201, 267283.Google Scholar
Russell, L. B. & Bangham, J. W. (1961). Variegated position type effects in the mouse. Genetics 46, 509525.Google Scholar
Sagar, R. & Kitchin, R. M. (1975). Selective silencing of eukaryotic DNA. Science 189, 426433.CrossRefGoogle Scholar
Schultz, J. (1956). The relation of the heterochromatic chromosome regions to the nucleic acids of the cell. Cold Spring Harbor Symposium on Quantitative Biology 21, 307332.Google Scholar
Siddiqi, O. H. (1962 a). Mutagenic action of nitrous acid on Aspergillus nidulans. Genetical Research 3, 303314.Google Scholar
Siddiqi, O. H. (1962 b). The fine structure of the pabal region of Aspergillus nidulans. Genetical Research 3, 6989.Google Scholar
Sneath, P. H. A. (1955). Putrescine as an essential growth factor for a mutant of Aspergillus nidulans. Nature 175, 818.CrossRefGoogle Scholar
Spathas, D. H. (1978). A salt sensitive mutant on chromosome VI of Aspergillus nidulans. Aspergillus News Letter 14, 28.Google Scholar
Spathas, D. H., Pateman, J. A. & Clutterbuck, A. J. (1982). Polyamine transport in Aspergillus nidulans. Journal of General Microbiology 128, 557563.Google ScholarPubMed
Spathas, D. H., Clutterbuck, A. J. & Pateman, J. A. (1983 a). A polyamine sensitive mutant of Aspergillus nidulans. Journal of General Microbiology 129, 18651871.Google Scholar
Spathas, D. H., Clutterbuck, A. J. & Pateman, J. A. (1983 b). Putrescine as a nitrogen source for wild type and mutants of Aspergillus nidulans. FEMS Microbiology Letters, 17, 345348.Google Scholar
Spofford, J. B. (1976). Position-effect variegation in Drosophila. In The Genetics and Biology of Drosophila, vol. 1 c (ed. Ashburner, M. and Novitski, E.), pp. 9551018. London: Academic Press.Google Scholar
Szostak, J. W. & Blackburn, E. H. (1982). Cloning yeast telomeres on linear plasmid vectors. Cell 29, 245255.Google Scholar
Tamame, M., Antequera, F., Villanueva, J. R. & Santos, T. (1983). High-frequency conversion to a ‘fluffy’ developmental phenotype in Aspergillus by 5-azacytidine treatment: evidence for the involvement of a single nuclear gene. Molecular and Cellular Biology 3, 22872297.Google ScholarPubMed
Venolia, L., Gartler, S. M., Wassman, E. R., Yen, P., Mohandas, T. & Shapiro, L. J. (1982). Transformation with DNA from 5-azacytidine-reactivated X chromosomes. Proceedings of the National Academy of Sciences 79, 23522354.Google Scholar
Wigler, M. H. (1981). The inheritance of methylation patterns in vertebrates. Cell 24, 285286.Google Scholar