Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T03:30:38.676Z Has data issue: false hasContentIssue false

Genetic and developmental analysis of the sex-determining gene ‘double sex’ (dsx) of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Rolf Nöthiger
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Margrit Leuthold
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Nils Andersen
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Pia Gerschwiler
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Armin Grüter
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Walther Keller
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Christian Leist
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Maja Roost
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Helen Schmid
Affiliation:
Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich/Switzerland
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sex determination in Drosophila depends on the ratio of X chromosomes to sets of autosomes (X:A). This chromosomal signal is used to regulate a few control genes whose state of activity selects either the male or the female sexual pathway. We have studied the structure and function of dsx (double sex) which appears to be the last regulatory gene on whose function the sexual pathway eventually depends. We have mutagenized the locus, varied the doses of dominant dsx-mutations and wildtype alleles, and combined different dsx-alleles with recessive mutations in other sex-determining genes, such as ix, tra-2 and tra.

The locus dsx harbours two genetic functions, dsxm to implement the male program, dsxf to implement the female program. We found that dsxm and dsxf can mutate independently although most mutations abolish both functions. We conclude that dsxm and dsxf each have their specific domain, but also share a large region of DNA that is essential for both functions. We present evidence that the dominant mutations correspond to a constitutive expression of the male-determining function dsxm, with the simultaneous abolishment of the female-determining function dsxf. This effect can be counteracted by two doses of expressed dsxf so that a female phenotype results. The products of one dose of expressed dsxm and one dose of expressed dsxf in the same cell appear to neutralize each other which leads to a null phenotype. The mutant combinations suggest that the product of dsxf requires the products of ix+, tra-2+ and tra+ to become functional.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Baker, B. S. & Ridge, K. (1980). Sex and the single cell: on the action of major loci affecting sex determination in Drosophila melanogaster. Genetics 94, 383423.CrossRefGoogle ScholarPubMed
Baker, B. S. & Belote, J. M. (1983). Sex determination and dosage compensation in Drosophila melanogaster. Annual Review of Genetics 17, 345393.CrossRefGoogle ScholarPubMed
Belote, J. M., McKeown, M. B., Andrew, D. J., Scott, T. N., Wolfner, M. F. & Baker, B. S. (1985). Control of sexual differentiation in Drosophila melanogaster. Cold Spring Harbor Symposia on Quantitative Biology 50, 605614.CrossRefGoogle ScholarPubMed
Bridges, C. B. (1921). Triploid intersexes in Drosophila melanogaster. Science 54, 252254.CrossRefGoogle ScholarPubMed
Butler, B., Pirrotta, V., Irminger-Finger, I. & Nöthiger, R. (1986). The sex-determining gene tra of Drosophila: molecular cloning and transformation studies. EMBO Journal 5, 36073613.CrossRefGoogle ScholarPubMed
Busson, D., Gans, M., Komitopoulou, K. & Masson, M. (1983). Genetic analysis of three dominant female sterile mutations located on the X-chromosome of Drosophila melanogaster. Genetics 105, 309325.CrossRefGoogle ScholarPubMed
Cline, T. W. (1986). A female-specific lethal lesion in an X-linked positive regulator of the Drosophila sex determination gene, Sex-lethal. Genetics 113, 641663.CrossRefGoogle Scholar
Coté, B., Bender, W., Curtis, D. & Chovnick, A. (1986). Molecular mapping of the rosy locus in Drosophila melanogaster. Genetics 112, 769783.CrossRefGoogle ScholarPubMed
Duncan, F. W. & Kaufman, T. C. (1975). Cytogenetic analysis of chromosome 3 in Drosophila melanogaster. Mapping of the proximal portion of the right arm. Genetics 80, 733752.CrossRefGoogle Scholar
Epper, F. (1981). Morphological analysis and fate map of the intersexual genital disc of the mutant double-sex dominant in Drosophila melanogaster. Developmental Biology 88, 104114.CrossRefGoogle Scholar
Fung, S. T. C. & Gowen, J. W. (1957). The developmental effect of a sex-limited gene in Drosophila melanogaster. Journal of Experimental Zoology 134, 515532.CrossRefGoogle Scholar
Gowen, J. W. & Fung, S. T. C. (1957). Determination of sex through genes in a major sex locus in Drosophila melanogaster. Heredity 11, 397402.CrossRefGoogle Scholar
Grüter, A. (1983). Genetische Feinstrukturanalyse am doublesex-Locus von Drosophilia melanogaster. Diploma Thesis, University of Zurich, Switzerland.Google Scholar
Hildreth, P. E. (1965). Doublesex, a recessive gene that transforms both males and females of Drosophila melanogaster. into intersexes. Genetics 51, 659678.CrossRefGoogle Scholar
Hilfiker, A. (1983). Gendosisanalyse X-chromosomaler und autosomaler Geschlechtsbestimmungsfaktoren unter Berücksichtigung der Temperatur bei Drosophila melanogaster. Diploma Thesis, University of Zurich, Switzerland.Google Scholar
Janning, W. (1976). Entwicklungsegenetische Untersuchungen an Gynandern von Drosophila melanogaster. IV. Vergleich der morphogenetischen Anlagepläne larvaler und imaginaler Strukturen. Wilhelm Roux's Archives of Developmental Biology 179, 349372.CrossRefGoogle Scholar
Janning, W., Labhart, C. & Nöthiger, R. (1983). Cell lineage restrictions in the genital disc of Drosophila revealed by Minute gynandromorphs. Wilhelm Roux's Archives of Developmental Biology 192, 337346.CrossRefGoogle ScholarPubMed
King, R. C. (1970). Ovarian Development in Drosophila melanogaster. New York: Academic Press.Google Scholar
Laugé, G. (1969). Influence de la temperature d'élevage sur l'expression des caractères sexuels externes et internes des intersexués triploides de Drosophila melanogaster. Comptes Rendues de l' Académie des Sciences Paris 255, 17981800.Google Scholar
Leist, Ch. (1983). Komplementationsanalyse von 40 rezessiven Letalfaktoren in der double-sex Region (84F 2–3; 84F 16) von Drosophila melanogaster. Diploma Thesis, University of Zurich, Switzerland.Google Scholar
Lewis, E. B. & Bacher, F. (1968). Method of feeding ethyl methanesulfonate (EMS) to Drosophila males. Drosophila Information Service 43, 193.Google Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington Publication No. 627.Google Scholar
Maine, E. M., Salz, H. K., Schedl, P. & Cline, T. W. (1985 a). Sex-lethal, a link between sex determination and sexual differentiation in Drosophila melanogaster. Cold Spring Harbor Symposia on Quantitative Biology 50, 595604.CrossRefGoogle ScholarPubMed
Maine, E. M., Salz, H. K., Cline, T. W. & Schedl, P. (1985 b). The Sex-lethal gene of Drosophila: DNA alterations associated with sex-specific lethal mutations. Cell 43, 521529.CrossRefGoogle ScholarPubMed
McKeown, M., Belote, J. M. & Baker, B. S. (1987). A molecular analysis of transformer, a gene in Drosophila melanogaster that controls female sexual development. Cell 48, 489499.CrossRefGoogle Scholar
Mischaikow, E. (1959). Mas: Masculinizer. Drosophila Information Service 33, 98.Google Scholar
Monod, J. & Poulson, D. F. (1936). Specific reactions of the ovary to interspecific transplantation among members of the melanogaster group of Drosophila. Genetics 22, 257263.CrossRefGoogle Scholar
Nöthiger, R., Roost, M. & Schüpbach, T. (1980). ‘Masculinizer’ is an allele of ‘doublesex’. Drosophila Information Service 55, 118.Google Scholar
Nöthiger, R. è Steinmann-Zwicky, M. (1985). Sex determination in Drosophila. Trends in Genetics 1, 209215.CrossRefGoogle Scholar
Roost, M. (1978). Das Zusammenwirken geschlechtsbestimmender Gene bei Drosophilia melanogaster unter besonderer Berücksichtgung der Mutation doublesex Dominant. Diploma Thesis, University of Zurich, Switzerland.Google Scholar
Schüpbach, T., Wieschaus, E. & Nöthiger, R. (1978). A study of the female germ line in mosaics of Drosophila. Wilhelm Roux's Archives of Developmental Biology 184, 4156.CrossRefGoogle Scholar
Seidel, S. (1963). Experimentelle Untersuchungen über die Grundlagen der Sterilität von transformer (tra) Männchen bei Drosophila melanogaster. Zeitschrift für Vererbungslehre 94, 215241.Google Scholar
Steinmann-Zwicky, M. & Nöthiger, R. (1985 a). The hierarchical relation between X-chromosomes and autosomal sex-determining genes. EMBO Journal 4, 163166.CrossRefGoogle ScholarPubMed
Steinmann-Zwicky, M. & Nöthiger, R. (1985 b). A small region on the X chromosome of Drosophila regulates a key gene that controls sex determination and dosage compensation. Cell 42, 877887.CrossRefGoogle ScholarPubMed
Stern, C. (1966). Pigmentation mosaicism in intersexes of Drosophila. Revue Suisse de Zoologie 73, 339355.Google Scholar
Ursprung, H. (1967). In vivo culture of Drosophila imaginal discs. In ‘Methods of Developmental Biology’ (ed. Wilt, F. H. and Wessells, N. K.), pp. 485492. New York: T. Y. Crowell.Google Scholar