Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T08:50:58.625Z Has data issue: false hasContentIssue false

Gene-environment interactions of the eye-gone mutant in Drosophila melanogaster and a comparison with eyeless

Published online by Cambridge University Press:  14 April 2009

David M. Hunt
Affiliation:
Department of Genetics, University of Sheffield
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comparison of the gene-environment interactions of the eyg mutant in two different genetic backgrounds clearly demonstrates that the properties of the genetic background play a major role in the control of the gene-environment interactions of this mutant. Similarly, modifier background is important in the determination of the sensitive stages in eye development to a cholesterol-deficient diet.

The phenotypic identity of the eyeless and eye-gone mutants suggests a close underlying metabolic and developmental relationship. Possible inter-relations of these two mutant genes are discussed in the light of their gene-environment interactions in a standardized genotype.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

References

REFERENCES

Baron, A. L. (1935). Facet number in Drosophila melanogaster as influence by certain genetic and environmental factors. J. exp. Zool. 70, 461489.Google Scholar
Bodenstein, D. (1950). The postembryonic development of Drosophila. In Biology of Drosophila (ed. Demerec, M.), pp. 275367. New York: John Wiley and Sons, Inc.Google Scholar
Bridges, C. B. & Brehme, K. S. (1944). The mutants of Drosophila melanogaster. Publs. Carnegie Instn. no. 552.Google Scholar
Edwards, J. W. & Gardner, E. J. (1966). Genetics of the eyes-reduced mutant of Drosophila melanogaster, with special reference to homoeosis and eyelessness. Genetics 53, 785798.CrossRefGoogle ScholarPubMed
Glassman, E. (1965). Genetic regulation of xanthine dehydrogenase of Drosophila melanogaster. Fedn. Proc. 24, 12431251.Google ScholarPubMed
Hunt, D. M. & Burnet, B. (1969). Gene-environment interactions of the eyeless mutant in Drosophila melanogaster. Genet. Res., Camb. (in the Press).Google ScholarPubMed
Karlson, P., Hoffmeister, H., Hoppe, W. & Huber, R. (1963). Zur Chemie des Ecdysons. Ann. Chem. 662, 120.CrossRefGoogle Scholar
Kobayashi, M., Saito, M., Ishitoya, Y. & Ikekawa, N. (1963). Brain hormone activity in Bombyx mori of sterols and physiologically vital active substances. Proc. Soc. exp. Biol. Med. 114, 316318.CrossRefGoogle Scholar
Sang, J. H. (1956). The quantitative nutritional requirements of Drosophila melanogaster. J. exp. Biol. 33, 4572.Google Scholar
Sang, J. H. & Burnet, B. (1963). Environmental modification of the eyeless phenotype in Drosophila melanogaster. Genetics 48, 16831699.CrossRefGoogle ScholarPubMed
Sang, J. H. & Burnet, B. (1967). Physiological genetics of melanotic tumors in Drosophila melanogaster. IV. Gene-environment interactions of tu-bw with different third chromosome backgrounds. Genetics 56, 743754.CrossRefGoogle ScholarPubMed
Scharloo, W. (1962). The influence of selection and temperature on a mutant character (ci D) in Drosophila melanogaster. Arche néerl. Zool. 14, 431512.CrossRefGoogle Scholar
Stevens, W. L. (1948). Control by gauging. Jl R. statist. Soc. 10, 5498.Google Scholar
Vogt, M. (1943). Zur Produktion und Bedentung metamorphosefördernder Hormone während der Larvenentwicklung von Drosophila. Biol. Zbl. 63, 395446.Google Scholar
Vogt, M. (1946). Zur labilen Determination der Imaginalscheiben von Drosophila. I. Verhalten verschiedenaltriger Imaginalanlagen bei operativer Defektsetzung. Biol. Zbl. 65, 223238.Google Scholar
Woolf, B. (1951). Calculation of X 2 for a 2 × 2 Table. Nature, Lond. 168, 1087.CrossRefGoogle Scholar