Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T07:59:23.307Z Has data issue: false hasContentIssue false

Gene conversion in higher organisms: Non-reciprocal recombination events at the rosy cistron in Drosophila melanogaster*

Published online by Cambridge University Press:  14 April 2009

G. H. Ballantyne
Affiliation:
Genetics and Cell Biology, University of Connecticut, Storrs, Connecticut 06268
Arthur Chovnick
Affiliation:
Genetics and Cell Biology, University of Connecticut, Storrs, Connecticut 06268
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analysis of a series of exceptional ry+ half-tetrads, produced in mass matings involving rosy mutant heterozygous half-tetrads, provides rigorous demonstration of the occurrence of non-reciprocal as well as reciprocal recombination events within the rosy cistron of Drosophila melanogaster. Inferences about allele recombination drawn from this and other studies in Drosophila provide a strong argument that gene conversion occurs as a regular event in higher eukaryotes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Baillie, D., Astell, C. & Scholefield, J. (1966). Double crossovers with a short genetic interval in Drosophila melanogaster. Canadian Journal of Genetics and Cytology 8, 350.Google Scholar
Baldwin, M. & Chovnick, A. (1967). Autosomal half-tetrad analysis in Drosophila melanogaster. Genetics 55, 277298.CrossRefGoogle ScholarPubMed
Ballantyne, G. H., Chovnick, A. & Baillie, D. (1970). Gene conversion within the rosy cistron in Drosophila melanogaster: observations on polarity, marker effects, and a three-point intracistronic half-tetrad experiment. Genetics 64 (Suppl.), S 5.Google Scholar
Boon, T. & Zinder, N. D. (1969). A mechanism for genetic recombination generating one parent and one recombinant. Proceedings of National Academy of Sciences, Washington 64, 573577.CrossRefGoogle ScholarPubMed
Chovnick, A. (1958). Aberrant segregation and pseudoallelism at the garnet locus in Drosophila melanogaster. Proceedings of National Academy of Sciences, Washington 44, 333337.CrossRefGoogle ScholarPubMed
Chovnick, A. (1961). The garnet locus in Drosophila melanogaster. I. Pseudo-allelism. Genetics 46, 493507.CrossRefGoogle Scholar
Chovnick, A. (1966). Genetic organization in higher organisms. Proceedings of the Royal Society, London B 164, 198208.Google ScholarPubMed
Chovnick, A., Ballantyne, G. H., Baillie, D. L. & Holm, D. G. (1970). Gene conversion in higher organisms: half-tetrad analysis of recombination within the rosy cistron of Drosophila melanogaster. Genetics 65 (in the Press).Google Scholar
Chovnick, A., Ballantyne, G. H. & Holm, D. G. (1970). Large-scale half-tetrad analysis utilizing a nutritional selective procedure for the study of allelic recombination and conversion within the rosy cistron of Drosophila melanogaster. Genetics 64 (Suppl.), S 12.Google Scholar
Chovnick, A., Lefkowitz, R. J. & McQuinn, D. R. (1956). Complexity at the garnet locus in Drosophila melanogaster. Genetics 41, 637.Google Scholar
Finnerty, V. G., Baillie, D. L. & Chovnick, A. (1970). A chemical system for mass collection of virgin females or males. Drosophila Information Service 45, 190.Google Scholar
Finnerty, V. G., Duck, P. & Chovnick, A. (1970). Studies on genetic organization in higher organisms. II. Complementation and fine structure of the maroon-like locus of Drosophila melanogaster. Proceedings of National Academy of Sciences, Washington 65, 939946.CrossRefGoogle ScholarPubMed
Green, M. M. (1960). Double crossing over or gene conversion at the white loci in Drosophila melanogaster. Genetics 45, 1518.CrossRefGoogle ScholarPubMed
Hastings, P. J. & Whitehouse, H. L. K. (1964). A polaron model of genetic recombination by the formation of hybrid deoxyribonucleic acid. Nature, 201, 10521054.CrossRefGoogle ScholarPubMed
Hexter, W. M. (1963). Nonreciprocal events at the garnet locus in Drosophila melanogaster. Proceedings of National Academy of Sciences, Washington 50, 372379.CrossRefGoogle ScholarPubMed
Holliday, R. (1964). A mechanism for gene conversion in fungi. Genetical Research 5, 282304.CrossRefGoogle Scholar
Holm, D. G. (1969). The meiotic behaviour of compound autosomes in Drosophila melanogaster. Ph.D. Thesis, University of Connecticut, Storrs, Connecticut.Google Scholar
Holm, D. G., Deland, M. & Chovnick, A. (1967). Meiotic segregation of C(3L) and C(3R) chromosomes in Drosophila melanogaster. Genetics 56, 565566.Google Scholar
Lindsley, D. L. & Grell, E. H. (1967). Genetic variations of Drosophila melanogaster. Publications of Carnegie Institute no. 627.Google Scholar
Mitchell, M. B. (1955). Aberrant recombination of pyridoxine mutants of Neurospora. Proceedings of National Academy of Sciences, Washington 41, 215220.CrossRefGoogle ScholarPubMed
Paszewski, A. (1970). Gene conversion: observations on the DNA hybrid models. Genetical Research 15, 5564.CrossRefGoogle ScholarPubMed
Smith, P. D., Finnerty, V. G. & Chovnick, A. (1970 a). Intragenic recombination and gene conversion in Drosophila. Genetics 64 (Suppl.), S 61.Google Scholar
Smith, P. D., Finnerty, V. G. & Chovnick, A. (1970 b). Gene conversion in Drosophila: Non-reciprocal events at the maroon-like cistron. Nature 228, 441444.Google ScholarPubMed
Welshons, W. J. & von Halle, E. S. (1962). Pseudoallelism at the Notch locus in Drosophila. Genetics 47, 743759.CrossRefGoogle ScholarPubMed
Whitehottse, H. L. K. (1963). A theory of crossing-over by means of hybrid deoxyribo-nucleic acid. Nature 199, 10341040.CrossRefGoogle Scholar