Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T05:39:37.782Z Has data issue: false hasContentIssue false

A gamma ray-induced non-excitable membrane mutant in Paramecium caudatum: a behavioral and genetic analysis

Published online by Cambridge University Press:  14 April 2009

Mihoko Takahashi
Affiliation:
Institute of Biological Sciences, University of Tsukuba, Sakura-mura, Ibaraki 305, Japan
Nobuyuki Haga
Affiliation:
Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.
Todd Hennessey
Affiliation:
Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.
Robert D. Hinrichsen
Affiliation:
Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.
Ritsuo Hara
Affiliation:
Institute of Biological Sciences, University of Tsukuba, Sakura-mura, Ibaraki 305, Japan
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new CNR (caudatum non-reversal) mutant of Paramecium caudatum was isolated after gamma ray mutagenesis. This CNR lacks not only the transient inward Ca2+ current but also the sustained Ca2+ current. It was shown to complement the three known CNR mutants of P. caudatum (cnrA, cnrB and cnrC) by crossbreeding analyses. Thus, this new mutant belongs to a 4th CNR locus, designated cnrD. The defect of cnrD can be partially rescued by microinjection of cytoplasm from any of the three CNR mutants or the three Pawns (pwA, pwB and pwC) in P. tetraurelia. Since the three CNR genes have been shown to be different from the three Pawn genes by cytoplasmic complementation test (Haga et al. 1983), this result suggests that cnrD is the 7th non-excitable mutant in Paramecium. Thus, there are at least seven genes controlling Ca2+ channel function in Paramecium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Adoutte, A., Ramanathan, R., Lewis, R. M., Dute, R. R., Ling, K., Kung, C. & Nelson, D. L. (1980). Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. Journal of Cell Biology 84, 717738.Google Scholar
Chang, S. Y., Van Houten, J., Robles, L. J., Lui, S. S. & Kung, C. (1974). An extensive behavioural and genetic analyses of the Pawn mutants in Paramecium tetraurelia. Genetical Research 23, 165173.CrossRefGoogle Scholar
Dryl, S. (1959). Antigenic transformation in Paramecium aurelia after homologous antiserum treatment during autogamy and conjugation. Journal of Protozoology 6, s 96.Google Scholar
Dryl, S. (1961). The ciliary reversal in Paramecium caudatum induced by simultaneous action of barium and calcium ions. Journal of Protozoology 8, s 55.Google Scholar
Dunlap, K. (1977). Localization of calcium channels in Paramecium caudatum. Journal of Physiology 271, 119133.CrossRefGoogle ScholarPubMed
Eckert, R. (1972). Bioelectric control of cilia. Science 176, 473481.CrossRefGoogle Scholar
Eckert, R., Naitoh, Y. & Machemer, H. (1976). Calcium in the bioelectric and motor functions of Paramecium. In Calcium in Biology System (ed. Duncan, C. J.), pp. 233255. Cambridge: University Press.Google Scholar
Haga, N., Forte, M., Ramanathan, R., Hennessey, T., Takahashi, M. & Kung, C. (1984). Characterization and purification of a soluble protein controlling Ca-channel activity in Paramecium. Cell 39, 7178.CrossRefGoogle ScholarPubMed
Haga, N., Forte, M., Saimi, Y. & Kung, C. (1982). Microinjection of cytoplasm as a test of complementation in Paramecium. Journal of Cell Biology 82, 559564.CrossRefGoogle Scholar
Haga, N., Forte, M., Saimi, Y. & Kung, C. (1984). Characterization of factors which complement Ca2+ channel mutations in Paramecium tetraurelia. Journal of Neurogenetics 1, 259274.CrossRefGoogle ScholarPubMed
Haga, N., Saimi, Y., Takahashi, M. & Kung, C. (1983). Intra- and interspecific complementation of membrane-inexcitable mutants of Paramecium. Journal of Cell Biology 97, 378382.CrossRefGoogle ScholarPubMed
Hennessey, T. & Kung, C. (1984). An anticalmodulin drug, W-7, inhibits the voltage-dependent calcium current in Paramecium caudatum. Journal of Experimental Biology 110, 169181.Google Scholar
Hinrichsen, R. D. & Saimi, Y. (1984). A mutation that alters properties of the Ca2+ channel in Paramecium tetraurelia. Journal of Physiology 351, 397410.CrossRefGoogle ScholarPubMed
Hinrichsen, R. D., Saimi, Y. & Kung, C. (1984). Mutants with altered Ca++ channel properties in Paramecium tetraurelia: isolation, characterization and genetic analysis. Genetics 108, 545558.CrossRefGoogle Scholar
Hiwatashi, K. (1968). Determination and inheritance of mating type in Paramecium caudatum. Genetics 58, 373386.Google Scholar
Hiwatashi, K., Haga, N. & Takahashi, M. (1980). Restoration of membrane excitability in a behavioral mutant of Paramecium caudatum during conjugation and by microinjection of wild-type cytoplasm. Journal of Cell Biology 84, 476480.Google Scholar
Jennings, H. S. (1906). Behavior of the Lower Organisms. New York: Columbia University Press.Google Scholar
Koizumi, S. (1974). Microinjection and transfer of cytoplasm in Paramecium. Experimental Cell Research 88, 7478.CrossRefGoogle ScholarPubMed
Kung, C. (1971). Genetic mutants with altered system of excitation in Paramecium aurelia. I. Phenotypes of the behavioral mutants. Zeitschrift für Vergleichende Physiologie 71, 142164.CrossRefGoogle Scholar
Kung, C. & Eckert, R. (1972). Genetic modifications of electric properties in an excitable membrane. Proceedings of the National Academy of Sciences, U.S.A. 69, 9397.CrossRefGoogle Scholar
Kung, C. & Naitoh, Y. (1973). Calcium-induced ciliary reversal in the extracted models of ‘Pawn’, a behavioral mutant of Paramecium. Science 179, 195196.CrossRefGoogle ScholarPubMed
Mikami, K. & Hiwatashi, K. (1975). Macronuclear regeneration and cell division in Paramecium caudatum. Journal of Protozoology 22, 536540.Google Scholar
Naitoh, Y. (1968). Ionic control of the reversal response of cilia in Paramecium caudatem: a calcium hypothesis. Journal of General Physiology 51, 85103.Google Scholar
Naitoh, Y. & Eckert, R. (1969). Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation. Science 169, 963965.Google Scholar
Naitoh, Y. & Kaneko, H. (1972). Reactivated triton-extracted models of Paramecium: modification of ciliary movement by calcium ions. Science 176, 523524.CrossRefGoogle Scholar
Ogura, A. & Takahashi, K. (1976). Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature 264, 170172.CrossRefGoogle ScholarPubMed
Sato, M., Tanimura, T. & Hiwatashi, K. (1983). Two-dimensional gel analysis of CNR mutants of Paramecium caudatum. Japanese Journal of Genetics 58, s 679.Google Scholar
Satow, Y. & Kung, C. (1976). Mutants with reduced Ca activation in Paramecium aurelia. Journal of Membrane Biology 28, 277294.CrossRefGoogle ScholarPubMed
Satow, Y. & Kung, C. (1979). Voltage-sensitive Ca-channels and the transient inward current in Paramecium tetraurelia. Journal of Experimental Biology 78, 149161.CrossRefGoogle Scholar
Schein, S. J. (1976). Nonbehavioral selection for pawns, mutants of Paramecium aurelia with decreased excitability. Genetics 84, 453468.CrossRefGoogle ScholarPubMed
Sonneborn, T. M. (1970). Methods in Paramecium research. In Method in Cell Physiology (ed. Prescott, D. M.), vol. 4, pp. 241339. New York: Academic Press.Google Scholar
Stadler, L. J. & Roman, H. (1948). The effect of X-rays upon mutation of the gene A in maize. Genetics 33, 273303.CrossRefGoogle ScholarPubMed
Takahashi, M. (1979). Behavioral mutants in Paramecium caudatum. Genetics 91, 393408.CrossRefGoogle ScholarPubMed
Takahashi, M. & Naitoh, Y. (1978). Behavioral mutants of Paramecium caudatum with defective membrane electrogenesis. Nature 271, 656659.CrossRefGoogle Scholar
Takahashi, M. & Shono, M. (1980). A new behavioural mutant in Paramecium caudatum: isolation by artificial induction of cytogamy. Zoological Magazine, Tokyo 89, s 566.Google Scholar