Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T09:25:51.622Z Has data issue: false hasContentIssue false

Functional analysis of host-specificity mutants in Escherichia coli

Published online by Cambridge University Press:  14 April 2009

S. W. Glover
Affiliation:
M.R.C. Molecular Genetics Unit, Department of Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evidence from a functional analysis of host-specificity mutants in merodiploids is presented which supports the suggestion that three genes, hss, hsr and hsm, are necessary for the expression of host-controlled restriction and modification. The host-specificity phenotype expressed by the merodiploids provides evidence that at least two genes, hss and hsr, are concerned in the expression of host-specific restriction of DNA and one of these genes, hss, is responsible for the strain specificity of the restriction enzyme. A class of modification-deficient mutants isolated from restriction-deficient, modification-proficient mutants, was also tested for complementation in merodiploids and the phenotype of these merodiploids provides evidence that at least two genes, hss and hsm, are concerned in the expression of host-specific modification of DNA and one of these genes, hss, is responsible for the strain specificity of the modification enzyme. How these three genes function at the molecular level is discussed in terms of models based on the interaction of subunits to form oligomeric enzymes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Adams, M. H. (1950). Methods for the study of bacterial viruses. Methods in Medical Research 2, 173.Google Scholar
Appleyard, R. K. (1954). Segregation of new lysogenic types during growth of doubly lysogenic strain derived from Escherichia coli K-12. Genetics, Princeton 39, 440452.CrossRefGoogle Scholar
Arber, W. (1958). Transduction des caractères gal par le bactériophage λ. Archs. Sci. Genève 11, 259330.Google Scholar
Arber, W. (1960). Polylysogeny for bacteriophage lambda. Virology 11, 250272.CrossRefGoogle Scholar
Arber, W. & Dussoix, D. (1962). Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage λ. J. molec. Biol. 5, 1836.CrossRefGoogle ScholarPubMed
Arber, W. & Linn, S. (1969). DNA modification and restriction. Ann. Rev. Biochem. 38, 467500.CrossRefGoogle ScholarPubMed
Arber, W. & Smith, J. D. (1966). Host controlled modification of phage and its correlation with specific methylation of desoxyribunucleotides. IXth Int. Congr. Microbiol. p. 5.Google Scholar
Bertani, G. & Weigle, J. J. (1953). Host controlled variation in bacterial viruses. J. Bact. 65, 113121.CrossRefGoogle ScholarPubMed
Boyer, H. W. & Roulland-Dussoix, D. (1969). A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. molec. Biol. 41, 459472.CrossRefGoogle ScholarPubMed
Colson, C., Glover, S. W., Symonds, N. & Stacey, K. A. (1965). The location of the genes for host-controlled modification and restriction in Escherichia coli. Genetics, Princeton 52, 10431050.CrossRefGoogle ScholarPubMed
Davis, J. E., Strauss, J. H. & Sinsheimer, R. L. (1961). Bacteriophage MS2: another RNA phage. Science, N.Y. 134, 1427.Google Scholar
Fukasawa, T. & Saito, S. (1963). Abnormal growth of T-even phages in bacterial mutants defective in UPDG pyrophosphorylase. Fedn Proc. 22, 406.Google Scholar
Glover, S. W. (1968). Host specificity in F′ heterogenotes of Escherichia coli. J. gen. Microbiol. 53, i–ii.Google ScholarPubMed
Glover, S. W. & Colson, C. (1969). Genetics of host-controlled restriction and modification in Escherichia coli. Genet. Res. 13, 227240.CrossRefGoogle ScholarPubMed
Glover, S. W., Schell, J., Symonds, N. & Stacey, K. A. (1963). The control of host induced modification by phage P1. Genet. Res. 4, 480482.CrossRefGoogle Scholar
Hattman, S. & Fukasawa, T. (1963). Host-induced modification of T-even phages due to defective glucosylation of their DNA. Proc. natn. Acad. Sci. U.S.A. 50, 297300.CrossRefGoogle ScholarPubMed
Hayes, W. (1953). The mechanism of genetic recombination in Escherichia coli. Cold Spring Harb. Symp. quant. Biol. 18, 7593.CrossRefGoogle ScholarPubMed
Howard-Flanders, P. & Theriot, L. (1966). Mutations of Escherichia coli K12 defective in DNA repair and genetic recombination. Genetics, Princeton 53, 11371150.CrossRefGoogle ScholarPubMed
Hubacek, J. & Glover, S. W. (1970). Complementation analysis of temperature sensitive host specificity mutations in Escherichia coli. (In the Press.)CrossRefGoogle Scholar
Jacob, F. & Wollman, E. L. (1954). Etude génétique d'un bactériophage tempéré d'Escherichia coli. I. Le système génétique du bactèriophage λ. Annals. Inst. Pasteur, Paris 87, 654673.Google Scholar
Kellenberger, G., Symonds, N. & Arber, W. (1966). Host specificity of DNA produced by Escherichia coli. 8. Its acquisition by phage λ and its persistence through consecutive growth cycles. Z. Vererbungsl. 98, 247256.Google ScholarPubMed
Lederberg, S. (1966). Genetics of host-controlled restriction and modification of deoxyribonucleic acid in Escherichia coli. J. Bact. 91, 10291036.CrossRefGoogle ScholarPubMed
Lennox, E. S. (1955). Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190206.CrossRefGoogle ScholarPubMed
Low, B. (1968). Formation of merodiploids in matings with a class of rec recipient strains of Escherichia coli K12. Proc. natn. Acad. Sci., U.S.A. 60, 160167.CrossRefGoogle ScholarPubMed
Marvin, D. A. & Hoffman-Berling, H. (1963). Physical and chemical properties of two new small bacteriophages. Nature, Lond. 197, 517.CrossRefGoogle Scholar
Messelson, M. & Yuan, R. (1968). DNA restriction enzyme from E. coli. Nature, Lond. 217, 11101114.CrossRefGoogle Scholar
Shedlovsky, A. & Brenner, S. (1963). A chemical basis for the host-induced modification of T-even bacteriophages. Proc. natn. Acad. Sci., U.S.A. 50, 300306.CrossRefGoogle ScholarPubMed
Symonds, M., Stacey, K. A., Glover, S. W., Schell, J. & Silver, S. (1963). The chemical basis for host induced modification in phage T2. Biochem Biophys. Res. Commun. 12, 220222.CrossRefGoogle ScholarPubMed
Wood, W. B. (1966). Host specificity of DNA produced by Escherichia coli. Bacterial mutations affecting the restriction and modification of DNA. J. molec. Biol. 16, 118133.CrossRefGoogle ScholarPubMed