Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T16:20:06.940Z Has data issue: false hasContentIssue false

The formation of Hfr strains in Escherichia coli K12

Published online by Cambridge University Press:  14 April 2009

Paul Broda
Affiliation:
Medical Research Council, Microbial Genetics Research Unit, Hammersmith Hospital, London W.12*
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The isolation and characterization of an isogenic series of twelve Hfr strains is described. From their points of origin it was concluded that the sex factor integrates at a limited number of sites on the bacterial chromosome. Although the nutritional requirements of these Hfr strains were similar to those of the parent F+ strain, it was observed that one group had a markedly slower growth rate. The relevance of these observations to theories on the nature of F+ fertility and on the formation of Hfr strains is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Adelberg, E. A. & Burns, S. N. (1960). Genetic variation in the sex factor of E. coli. J. Bact. 79, 321330.CrossRefGoogle Scholar
Campbell, A. M. (1962). Episomes. Adv. Genet. 11, 101145.CrossRefGoogle Scholar
Cavalli-Sforza, L. L. & Jinks, J. L. (1956). Studies on the genetic system of E. coli K-12. J. Genet. 54, 87112.CrossRefGoogle Scholar
Cavalli-Sforza, L. L. & Lederberg, J. (1955). Isolation of preadaptive mutants in bacteria by sib-selection. Genetics, 41, 367.CrossRefGoogle Scholar
Clowes, R. C. & Rowley, D. (1954). Some observations on linkage effects in genetic recombination in Escherichia coli K12. J. gen. Microbiol. 11, 250260.CrossRefGoogle Scholar
DeWitt, S. K. & Adelberg, E. A. (1962). Transduction of the attached sex factor of Escherichia coli. J. Bact. 83, 673678.CrossRefGoogle ScholarPubMed
Hayes, W. (1953). Observations on a transmissible agent determining sexual differentiation in Bact. coli. J. gen. Microbiol. 8, 7288.Google Scholar
Hirota, Y. & Sneath, P. H. A. (1961). F′ and F-mediated transduction in Escherichia coli K12. Jap. J. Genet. 36, 307318.CrossRefGoogle Scholar
Jacob, F. & Wollman, E. L. (1956). Recombinasion génétique et mutants de fertilite chez E. coli K12. C. r. hebd. Seanc. Acad. Sci. Paris, 242, 303306.Google Scholar
Jacob, F. & Wollman, E. L. (1961). Sexuality and the Genetics of Bacteria. New York and London: Academic Press.Google Scholar
Lederberg, J. (1947). Gene recombination and linked segregations in E. coli. Genetics, 32, 505525.CrossRefGoogle Scholar
Lederberg, E. & Lederberg, J. (1953). Genetic studies of lysogenicity in E. coli. Genetics, 38, 5164.CrossRefGoogle Scholar
Lederberg, J. & Tatum, E. L. (1946). Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harb. Symp. quant. Biol. 11, 113114.Google Scholar
Lennox, E. S. (1955). Transduction of linked genetic characters of the host by bacteriophage P1. Virology, 1, 190206.CrossRefGoogle ScholarPubMed
Luria, S. E. & Delbrück, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491511.CrossRefGoogle ScholarPubMed
Mäkelä, P. H. (1963). Hfr males in Salmonella abony. Genetics, 48, 423429.CrossRefGoogle ScholarPubMed
Matney, T. S., Goldschmidt, E. P., Erwin, N. S. & Sckoggs, R. A. (1964). A preliminary map of genomic sites for F-attachment in Escherichia coli K12. Biochem. biophys. Res. Commun. 17, 278.CrossRefGoogle ScholarPubMed
Reeves, P. (1959). Ph.D. Thesis, London University.Google Scholar
Ritcher, A. (1961). Attachment of wild-type F factor to a specific chromosomal region in a variant strain of E. coli K12: the phenomenon of episomic alternation. Genet. Res. 2, 335345.Google Scholar
Sanderson, K. E. & Demerec, M. (1965). The linkage map of Salmonella typhimurium. Genetics, 51, 897913.CrossRefGoogle ScholarPubMed