Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T20:07:17.593Z Has data issue: false hasContentIssue false

Fine structure mapping and complementation studies of the metD methionine transport system in Salmonella typhimurium

Published online by Cambridge University Press:  14 April 2009

Carolyn E. Grundy
Affiliation:
Department of Applied Biology, University of Hull, Hull, HU6 7RX
P. D. Ayling*
Affiliation:
Department of Applied Biology, University of Hull, Hull, HU6 7RX
*
* Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A fine structure deletion map of the metD region of the chromosome of Salmonella typhimurium responsible for a high-affinity methionine transport system has been constructed. Complementation tests involving the introduction of metD+DNA contained in a pUC8 vector into metD strains indicated the presence of four complementation groups in the metD region. This suggested that the methionine system belongs to the osmotic shock-sensitive class of transport system, and therefore should possess a periplasmic methionine-binding protein and several membrane proteins. But a deletion mutation covering all known metD point mutations did not affect the level of a methionine binding activity in osmotic shock fluids, suggesting either that the deletion did not extend into the gene encoding the binding protein, or that the binding activity is not associated with the metD system. Possible reasons for the failure to isolate mutations in the gene for the binding protein are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Ames, G. F-L. (1986). Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annual Review of Biochemistry 55, 397425.CrossRefGoogle ScholarPubMed
Ames, G. F-L. & Nikaido, K. (1978). Identification of a membrane protein as a histidine transport component in Salmonella typhimurium. Proceedings of the National Academy of Sciences (USA) 75, 54475451.CrossRefGoogle ScholarPubMed
Ayling, P. D. (1981). Methionine sulfoxide is transported by high-affinity methionine and glutamine transport systems in Salmonella typhimurium. Journal of Bacteriology 148, 514520.Google Scholar
Ayling, P. D. & Bridgeland, E. S. (1972). Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium. Journal of General Microbiology 73, 127141.Google Scholar
Ayling, P. D.Mojica-A, T. & Klopotowski, T. (1979). Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system. Journal of General Microbiology 114, 227246.Google Scholar
Bachmann, B. J. (1990). Linkage map of Escherichia coli K-12, Edition 8. Microbiological Review 54, 130197.Google Scholar
Betteridge, P. R. & Ayling, P. D. (1975). The role of methionine transport-defective mutations in resistance to methionine sulphoximine in Salmonella typhimurium. Molecular and General Genetics 138, 4152.CrossRefGoogle ScholarPubMed
Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 15131523.Google Scholar
Cottam, A. N. & Ayling, P. D. (1989). Genetic studies of mutants in a high-affinity methionine transport system in Salmonella typhimurium. Molecular and General Genetics 215, 358363.Google Scholar
Furlong, C. E. (1987). Osmotic-shock-sensitive transport systems. In: Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, vol. 1, pp. 768796. American Society for Microbiology, Washington D.C.Google Scholar
Higgins, C. F.Gallagher, M. P.Hyde, S. CMimmack, M. L. & Pearce, S. R. (1990). Periplasmic binding proteindependent transport systems: the membrane-associated components. Philosophical Transactions of the Royal Society of London B 326, 353365.Google Scholar
Higgins, C. F.Haag, P. D.Nikaido, K.Ardeshir, F.Garcia, G. & Ames, G. F-L. (1982). Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium. Nature 298, 723727.CrossRefGoogle ScholarPubMed
Higgins, C. F.Hardie, M. M.Jamieson, D. & Powell, L. M. (1983). Genetic map of the opp (oligopeptide permease) locus of Salmonella typhimurium. Journal of Bacteriology 153, 830836.CrossRefGoogle ScholarPubMed
Higgins, C. F. & Hardie, M. M. (1983), Periplasmic protein associated with the oligopeptide permeases of Salmonella typhimurium and Escherichia coli. Journal of Bacteriology 155, 14341438.Google Scholar
Hryniewicz, M.Sirko, A.Palucha, A.Bock, A. & Hulanicka, D. (1990). Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. Journal of Bacteriology 172, 33583366.CrossRefGoogle ScholarPubMed
Hogarth, B. G. & Higgins, C. F. (1983). Genetic organization of the oligopeptide permease (opp) locus of Salmonella typhimurium and Escherichia coli. Journal of Bacteriology 153, 15481551.Google Scholar
Kadner, R. J. (1977). Transport and utilization of Dmethionine and other methionine sources in Escherichia coli. Journal of Bacteriology 129, 207216.Google Scholar
Lederberg, E. M. & Cohen, S. N. (1974). Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. Journal of Bacteriology 119, 10721074.Google Scholar
Lever, J. E. (1972). Quantitative assay of the binding of small molecules to protein: comparison of dialysis and membrane filter assays. Analytical Biochemistry 50, 7383.Google Scholar
Low, K. B. (1972). Escherichia coli K-12 F-prime factors, old and new. Bacteriological Reviews 36, 587607.Google Scholar
Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, New York.Google Scholar
Mizobuchi, K.Demerec, M. & Gillespie, D. H. (1962). Cysteine mutants of Salmonella typhimurium. Genetics 47, 16171627.Google Scholar
Nossal, N. G. & Heppel, L. A. (1966). The release of enzymes by osmotic shock from Escherichia coli in exponential phase. Journal of Biological Chemistry 241, 30553062.CrossRefGoogle ScholarPubMed
Ohta, N.Galsworthy, P. R. & Pardee, A. B. (1971). Genetics of sulfate transport by Salmonella typhimurium. Journal of Bacteriology 105, 10531062.Google Scholar
Pardee, A. B.Prestidge, L. S.Whipple, M. B. & Dreyfuss, J. (1966). A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium. Journal of Biological Chemistry 241, 39623969.Google Scholar
Sanderson, K. E. & Roth, J. R. (1983). Linkage map of Salmonella typhimurium, Edition VI. Microbiological Reviews 47, 410453.Google Scholar
Sanderson, K. E. & Roth, J. R. (1988). Linkage map of Salmonella typhimurium, Edition VII. Microbiological Reviews 52, 485532.CrossRefGoogle ScholarPubMed
Shaw, N. A. & Ayling, P. D. (1991). Cloning of high-affinity methionine transport genes from Salmonella typhimurium. FEMS Microbiology Letters 78, 127132.Google Scholar
Sirko, A.Hryniewicz, M.Hulanicka, D. & Bock, A. (1990). Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of cysTWAM gene cluster. Journal of Bacteriology 172, 33513357.CrossRefGoogle ScholarPubMed
Smith, D. A. (1971). S-amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Advances in Genetics 16, 141165.CrossRefGoogle ScholarPubMed