Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T21:45:46.284Z Has data issue: false hasContentIssue false

Expression and amplification of the genes for ribosomal RNA in bobbed mutants of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

F. Lee Dutton
Affiliation:
Biological Sciences Group, Molecular Genetics and Cell Biology Section, The University of Connecticut, Storrs, CT 06268
Hallie M. Krider
Affiliation:
Biological Sciences Group, Molecular Genetics and Cell Biology Section, The University of Connecticut, Storrs, CT 06268

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have employed stocks bearing clonally derived X chromosomes to investigate several features of the bobbed mutant syndrome, and the amplification of rDNA genes in D. melanogaster. We report that posterior macroscutellar bristle length correlates well with the rDNA content (i.e. dose of ivs–, or uninterrupted genes) in cloned X derivative strains. X/O males and X/X females with statistically indistinguishable rDNA contents have virtually identical bristle lengths. This indicates that (with respect to this phenotypic character) the rDNAs in these two genotypes are expressed equally, without apparent sexual dimorphism or dosage compensation. However, the severity of bobbed phenotype in terms of bristle morphology, turgite etching, and delayed eclosion is greater in the Xbb/XNO− female than in the Xbb/O male genotype for the alleles examined. We estimate the minimum dose of functioning rRNA genes required for viability at 26 δC to be 70 genes per diploid genome. We have examined the capacity of several X chromosomes which bear bobbed mutant alleles to compensate in X/O males, and find that disproportionate replication of these rDNAs does not take place. In contrast, at least one of the non-compensating bobbed alleles does appear to undergo rDNA magnification.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Clark, S. H. & Kiefer, B. I. (1977). Genetic modulation of RNA metabolism in Drosophila. II. Coordinate rate change in 4S, 5S, and poly-A associated RNA synthesis. Genetics 86, 801811.CrossRefGoogle ScholarPubMed
Clark, S. H., Strausbaugh, L. D. & Kiefer, B. I. (1977). Genetic modulation of RNA metabolism in Drosophila. I. Increased rate of ribosomal RNA synthesis. Genetics 86, 789800.CrossRefGoogle ScholarPubMed
Dutton, F. L. (1982). Studies on the disproportionate replication of ribosomal genes in Drosophila. Ph.D. Thesis, The University of Connecticut.Google Scholar
Dutton, F. L. & Krider, H. M. (1984 a). Factors influencing disproportionate replication of the ribosomal RNA cistrons in Drosophila melanogaster. Genetics 107, 395404.CrossRefGoogle ScholarPubMed
Dutton, F. L. & Krider, H. M. (1984 b). Ribosomal RNA cistrons of X chromosomes clonally derived from D. melanogaster laboratory populations: redundancy, organization, and stability. Genetics 107, 405421.CrossRefGoogle Scholar
Franz, G. & Kunz, W. (1981). Intervening sequences in ribosomal RNA genes and bobbed phenotype in Drosophila hydei. Nature 292, 638640.CrossRefGoogle ScholarPubMed
Glover, B. M. & Hogness, B. S. (1977). A novel arrangement of the 18S and 28S sequences in a repeating unit of Drosophila melanogaster rBNA. Cell 10, 167176.CrossRefGoogle Scholar
Hawley, R. S. & Tartof, K. B. (1983). The ribosomal BNA of Drosophila melanogaster is organized differently from that of Drosophila hydei. Journal of Molecular Biology 163, 499503.CrossRefGoogle Scholar
Hilliker, A. J. & Appels, R. (1982). Pleiotropic effects associated with the deletion of heterochromatin surrounding rBNA on the X chromosome of Drosophila. Chromosoma 86, 469490.CrossRefGoogle Scholar
Krider, H. M. & Plaut, W. (1972). Studies on nucleolar RNA synthesis in Drosophila melanogaster. I. The relationship between number of nucleolar organizers and rate of synthesis. Journal of Cell Science 11, 675687.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington Publication Number 627.Google Scholar
Long, E. O. & Dawid, I. B. (1979). Expression of ribosomal DNA insertions in Drosophila melanogaster. Cell 18, 11851196.CrossRefGoogle ScholarPubMed
Long, E. O., Rebbert, M. L. & Dawid, I. B. (1981 a). Nucleotide sequence of the initiation site for ribosomal RNA transcription in Drosophila melanogaster: Comparison of genes with and without insertions. Proceedings of the National Academy of Sciences (U.S.A.) 78, 15131517.CrossRefGoogle ScholarPubMed
Long, E. O., Collins, M., Kiefer, B. I. & Dawid, I. B. (1981 b). Expression of the ribosomal DNA insertions in bobbed mutants of Drosophila melanogaster. Molecular and General Genetics 182, 377384.CrossRefGoogle ScholarPubMed
Mulligan, P. K. & Rasch, E. M. (1980). The determination of genome size in male and female germ cells of Drosophila melanogaster by DNA-Feulgen cytophotometry. Histochemistry 66, 1118.CrossRefGoogle ScholarPubMed
Peacock, W. J., Miklos, G. L. G. & Goodchild, D. J. (1975). Sex chromosome meiotic drive systems in Drosophila melanogaster. I. Abnormal spermatid development in males with a heterochromatin-deficient X chromosome (sc4 sc8). Genetics 79, 613634.CrossRefGoogle Scholar
Pellegrini, M. J., Manning, J. & Davidson, N. (1977). Sequence arrangement of the rDNA of Drosophila melanogaster. Cell 10, 213224.CrossRefGoogle ScholarPubMed
Renkawitz-Pohl, R., Glatzer, K. H. & Kunz, W. (1981). Ribosomal RNA genes with an intervening sequence are clustered within X chromosomal ribosomal DNA of Drosophila hydei. Journal of Molecular Biology 148, 95101.CrossRefGoogle ScholarPubMed
Ritossa, F. (1968). Unstable redundancy of genes for ribosomal RNA. Proceedings of the National Academy of Sciences (U.S.A.) 60, 509516.CrossRefGoogle ScholarPubMed
Ritossa, F. (1976). The bobbed locus. In The Genetics and Biology of Drosophila, pp. 801846. New York: Academic Press.Google Scholar
Shermoen, W. & Kiefer, B. I. (1975). Regulation in rDNA-deficient Drosophila melanogaster. Cell 4, 275280.CrossRefGoogle ScholarPubMed
Spear, B. B. (1974). The genes for ribosomal RNA in diploid and polytene chromosomes of Drosophila melanogaster. Chromosoma 48, 159179.CrossRefGoogle ScholarPubMed
Tartof, K. D. (1971). Increasing the multiplicity of ribosomal RNA genes in Drosophila melanogaster. Science 171, 294297.CrossRefGoogle ScholarPubMed
Tartof, K. D. (1973). Regulation of ribosomal RNA gene multiplicity in Drosophila melanogaster. Genetics 73, 5771.CrossRefGoogle ScholarPubMed
Tartof, K. D. & Perry, R. P. (1970). The 5S RNA genes in Drosophila melanogaster. Journal of Molecular Biology 51, 171183.CrossRefGoogle Scholar
Weinmann, R. (1972). Regulation of ribosomal RNA and 5S synthesis in Drosophila melanogaster. I. Bobbed mutants. Genetics 72, 267276.CrossRefGoogle ScholarPubMed
Wellauer, P. K. & Dawid, I. B. (1977). The structural organization of ribosomal DNA in Drosophila melanogaster. Cell 10, 193212.CrossRefGoogle ScholarPubMed
White, R. C. & Hogness, D. S. (1977). R loop mapping of the 18S and 28S sequences in the long and short repeating units of Drosophila melanogaster rDNA. Cell 10, 177192.CrossRefGoogle Scholar
Yedvobnick, B. (1980). Disproportionate replication of ribosomal DNA in Drosophila melanogaster. Ph.D. Thesis, The University of Connecticut.Google Scholar
Yedvobnick, B., Krider, H. M. & Dutton, F. L. (1980). Analysis of disproportionate replication of ribosomal DNA in Drosophila melanogaster by a microhybridization method. Biochemical Genetics 18, 869877.CrossRefGoogle ScholarPubMed