Published online by Cambridge University Press: 14 April 2009
The melanotic tumour gene tu-C4 in Drosophila melanogaster shows incomplete dominance, together with variable penetrance and expressivity. It is tentatively located in the region of locus 52–53 on the third chromosome. Tumour formation in mutant homozygotes involves a precocious haemocyte transformation leading to the appearance of lamellocytes at the beginning of the third larval instar. These aggregate to form tumour-like masses which subsequently melanize. The process of tumour formation is in broad outline similar to that found in other tumour strains. Melanotic tumour formation is treated as a dichotomous threshold character, assuming an underlying normal distribution of liability relative to a fixed threshold. The expression of the tumour gene can be influenced by the levels of protein, phospholipid, nucleic acid and carbohydrate in the larval food medium, and changes in dominance and penetrance induced by sub-optimal environments deficient in these nutrients are positively correlated. Reinforcement by selection of the dominance relations of tu-C4 was accompanied by correlated changes in penetrance. Conversely, selection for increased penetrance was accompanied by correlated changes in dominance. Dominance and penetrance, it is concluded, are fundamentally related aspects of tumour gene expression. Recruitment of dominance modifiers linked to the tumour gene was excluded by the mating scheme employed, and the observed changes in dominance relations in response to selection were due largely to modifiers located on the second chromosome. Changes in dominance relations produced by selection could be significantly reinforced, or reversed, by environmental factors and consequently show a substantial genotype – environment interaction effect. These facts are relevant to current theories of dominance evolution.