Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:37:29.608Z Has data issue: false hasContentIssue false

Evolutionary dynamics of extranuclear genes

Published online by Cambridge University Press:  14 April 2009

N. Takahata
Affiliation:
Department of Zoology, NJ-15, University of Washington, Seattle, Wa 98195USA
M. Slatkin
Affiliation:
Department of Zoology, NJ-15, University of Washington, Seattle, Wa 98195USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We studied the evolutionary dynamics of extranuclear genes taking into account simple kinds of selection, two modes of inheritance and the multiplicity of genomes within a cell. Particular attention was paid to the accumulation of advantageous or deleterious mutations in an extranuclear genome. Within-generation drift due to multiplicity of genome and non-Mendelian segregation promotes the fixation of advantageous mutations and prevents deleterious mutations from accumulating. We show also that the extent of paternal contribution makes little difference in the rate, but, in contrast, the configuration of the genome and the mode of transmission both makes a large difference. These results are compatible with what is known about extranuclear genomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Avise, J. C., Lansman, R. A. & Shade, R. O. (1979 a). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics 92, 279295.CrossRefGoogle ScholarPubMed
Avise, J. C., Giblin-Davidson, C., Laerm, J., Patton, J. C. & Lansman, R. A. (1979 b). Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis. Proceedings of the National Academy of Science, U.S.A. 76, 66946698.CrossRefGoogle ScholarPubMed
Beale, G. H. & Knowles, J. K. C. (1978). Extranuclear Genetics. London: Edward Arnold.Google Scholar
Birky, C. W. Jr. (1978). Transmission genetics of mitochondria and chloroplasts. Annual Review of Genetics 12, 471512.CrossRefGoogle ScholarPubMed
Birky, C. W. Jr., Maruyama, T. & Fuerst, P. (1983). An approach to population and evolutionary genetic theory for genes in mitochondrial and chloroplasts, and some results. Genetics 103, 513527.CrossRefGoogle ScholarPubMed
Brown, W. M., George, M. Jr. & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Science, U.S.A. 76, 19671971.CrossRefGoogle ScholarPubMed
Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. (1982). Mitochondrial DNA sequences of primates: tempo and mode of evolution. Journal of Molecular Evolution 18 (4), 225239.CrossRefGoogle ScholarPubMed
Chapman, R. W., Stephens, J. C., Lansam, R. A. & Avise, J. C. (1982). Models of mitochondrial DNA transmission genetics and evolution in higher eucaryotes. Genetical Research 40, 4157.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1978). Model for evolution of Y chromosomes and dosage compensation. Proceedings of the National Academy of Science, U.S.A. 75, 56185622.CrossRefGoogle ScholarPubMed
Dawid, J. B. & Blackler, A. W. (1972). Maternal and cytoplasmic inheritance of mitochondrial DNA in Xenopus. Developmental Biology 29, 152161.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1974). The evolutionary advantage of recombination. Genetics 78, 737756.CrossRefGoogle ScholarPubMed
Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. (1980). Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Science, U.S.A. 77, 67156719.CrossRefGoogle ScholarPubMed
Gillham, N. W. (1978). Organelle Heredity. New York: Raven Press.Google Scholar
Grivell, L. A. (1983). Mitochondrial DNA. Scientific American 248 (3), 7889.CrossRefGoogle ScholarPubMed
Haigh, J. (1978). The accumulation of deleterious genes in a population - Muller's ratchet. Theoretical Population Biology 14 (2), 251267.CrossRefGoogle Scholar
Lansman, R. A., Avise, J. C. & Huettel, M. D. (1983). Critical experimental test of the possibility of ‘paternal leakage’ of mitochondrial DNA. Proceedings of the National Academy of Science, U.S.A. 80, 19691971.CrossRefGoogle ScholarPubMed
Maynard, Smith J. (1978). The Evolution of Sex. Cambridge University Press.Google Scholar
Muller, J. H. (1932). Some genetic aspects of sex. American Naturalist 66, 118138.CrossRefGoogle Scholar
Muller, J. H. (1964). The relation of recombination to mutational advance. Mutation Research 1, 29.CrossRefGoogle Scholar
Ohta, T. (1980). Two-locus problems in transmission genetics of mitochondria and chloroplasts. Genetics 96, 563–555.CrossRefGoogle ScholarPubMed
Ohta, T. (1983). Theoretical study on the accumulation of selfish DNA. Genetical Research 41, 115.CrossRefGoogle ScholarPubMed
Reilly, J. G. & Thomas, C. A. Jr,. (1980). Length polymorphisms, restriction site variation, and maternal inheritance of mitochondrial DNA of Drosophila melanogaster. Plasmid 3, 109115.CrossRefGoogle ScholarPubMed
Takahata, N. & Maruyama, T. (1981). A mathematical model of extranuclear genes and the genetic variability maintained in a finite population. Genetical Research 37, 291302.CrossRefGoogle Scholar
Thrailkill, K. M., Birky, C. W. Jr., LÜckemann, G. & Wolf, K. (1980). Intracellular population genetics: evidence for random drift of mitochondrial allele frequencies in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genetics 96, 237262.CrossRefGoogle ScholarPubMed