Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T00:29:20.605Z Has data issue: false hasContentIssue false

Estimation and interpretation of genetic distance in empirical studies

Published online by Cambridge University Press:  14 April 2009

Laurence D. Mueller
Affiliation:
Department of Genetics, University of California, Davis, California 95616, U.S.A.
Francisco J. Ayala
Affiliation:
Department of Genetics, University of California, Davis, California 95616, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Linear functions of Nei's genetic-distance statistic are calculated frequently in the literature of population genetics. Variance estimates for these linear functions are either not presented or incorrectly calculated. Part of the problem stems from the common assumption that distance statistics are independent random variables. This assumption is not generally correct. We describe methods for estimating the variance of linear combinations of genetic-distance statistics. We also suggest a method for constructing confidence intervals on genetic-distance statistics when these values are small (< 0·10) and their distribution deviates substantially from normal.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Ayala, F. J. (1975). Genetic differentiation during the speciation process. In Evolutionary Biology, vol. 8 (ed. Dobzhansky, T., Hecht, M. K. and Steere, W. C.), pp. 178. New York: Plenum Press.Google Scholar
Ayala, F. J., Tracey, M. L., Barr, L. G., McDonald, J. F. & Perez-Salas, S. (1974 a). Genetic variation in natural populations of five Drosophila species and the hypothesis of the selective neutrality of protein polymorphisms. Genetics 77, 348384.CrossRefGoogle ScholarPubMed
Ayala, F. J., Tracey, M. L., Hedgecock, D. & Richmond, R. C. (1974 b). Genetic differentiation during the speciation process in Drosophila. Evolution 28, 576592.CrossRefGoogle ScholarPubMed
Bickel, P. J. & Doksom, K. A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. San Francisco: Holden-Day.Google Scholar
Bruce, E. J. & Ayala, F. J. (1979). Phylogenetic relationships between man and the apes: Electrophoretic evidence. Evolution 33, 10401056.CrossRefGoogle ScholarPubMed
Dobzhansky, Th., Ayala, F. J., Stebbins, G. L. & Valentine, J. W. (1977). Evolution. San Francisco: W. H. Freeman.Google Scholar
Farris, J. S. (1972). Estimating phylogenetic trees from distance matrices. American Naturalist 106, 645668.CrossRefGoogle Scholar
Greenbaum, I. F. (1981). Genetic interactions between hybridizing cytotypes of the tent making (Uroderma bilobatum). Evolution 35, 306321.Google ScholarPubMed
Guttman, S. I., Wood, T. K. & Karlin, A. A. (1981). Genetic differentiation along host plant lines in the sympatric Enchenopa binotata Say complex (Homoptera: Membracidae). Evolution 35, 205217CrossRefGoogle ScholarPubMed
Halliday, R. B. (1981). Heterozygosity and genetic distance in sibling species of meat ants (Iridomyrmex purpureus Group). Evolution 35, 234242.CrossRefGoogle ScholarPubMed
Hedgecock, D. (1978). Population subdivision and genetic divergence in the red-bellied newt, Taricha rivularis. Evolution 32, 271286.Google ScholarPubMed
Hilburn, L. R. (1980). Population genetics of Chironomus stigmaterus (Diptera: Chironomedae). II. Protein variation in populations of the southwest United States. Evolution 34, 696704.CrossRefGoogle Scholar
Johnson, N. L. & Kotz, S. (1970). Continuous Univariate Distributions, vol. 1. New York: John Wiley.Google Scholar
Kendall, M. G. & Stuart, A. (1969). The advanced theory of statistics, vol. 1. New York: Hafner.Google Scholar
Kilias, G., Alahiotis, S. N. & Pelecanos, M. (1980). A multifactorial genetic investigation of speciation theory using Drosophila melanogaster. Evolution 34, 730737.CrossRefGoogle ScholarPubMed
Miller, R. G. (1974). The jackknife – a review. Biometrika 61, 115.Google Scholar
Mueller, L. (1979). A comparison of two methods for estimating Nei's measure of genetic distance. Biometrics 35, 757763.CrossRefGoogle ScholarPubMed
Mulley, J. C. & Latter, B. D. H. (1980). Genetic variation and evolutionary relationships within a group of thirteen species of penaeid pawns. Evolution 34, 904916.CrossRefGoogle Scholar
Nei, M. (1971). Interspecific differences and evolutionary time estimated from electrophoretic data on protein identity. American Naturalist 105, 385398.CrossRefGoogle Scholar
Nei, M. (1972). Genetic distance between populations. American Naturalist 106, 282292.CrossRefGoogle Scholar
Nei, M. (1973). The theory and estimation of genetic distance. In Genetic Structure of Populations (ed. Morton, N. E.), pp. 4554. Honolulu: University of Hawaii Press.Google ScholarPubMed
Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583590.CrossRefGoogle ScholarPubMed
Nei, M. & Roychoudhury, A. K. (1974). Sampling variances of heterozygosity and genetic distances. Genetics 76, 379390.CrossRefGoogle Scholar
Ryman, N., Reuterwall, G., Nygrén, K. & Nygrén, T. (1980). Genetic variation and differentiation in Scandinavian moose (Alces alces): Are large mammals monomorphic? Evolution 34, 10371049.Google ScholarPubMed
Sene, F. M. & Carson, H. L. (1977). Genetic variation in Hawaiian Drosophila. IV. Allozymic similarity between D. silvestris and D. heteroneura from the island of Hawaii. Genetics 86, 187198.CrossRefGoogle Scholar
Sneath, P. & Sokal, R. (1973). Numerical Taxonomy. San Francisco: W. H. Freeman.Google Scholar
Tabachnick, W. J., Munstermann, L. E. & Powell, J. R. (1979). Genetic distinctness of sympatric forms of Aedes aegypti in East Africa. Evolution 33, 287295.CrossRefGoogle ScholarPubMed
Ward, P. S. (1980). Genetic variation and population differentiation in the Rhytidoponera impressa group, a species complex of ponevine ants (Hymenoptera: Formicidae). Evolution 34, 10601076.CrossRefGoogle Scholar