Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:28:57.692Z Has data issue: false hasContentIssue false

Electrofusion of mouse embryos results in uniform tetraploidy and not tetraploid/diploid mosaicism

Published online by Cambridge University Press:  14 April 2009

Roberta M. James*
Affiliation:
Department of Obstetrics and Gynaecology, University of Edinburgh, Centre for Reproductive Biology, 37 Chalmers Street, Edinburgh EH3 9EW, UK
Matthew H. Kaufman
Affiliation:
Department of Anatomy, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK.
Sheila Webb
Affiliation:
Department of Anatomy, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK.
John D. West
Affiliation:
Department of Obstetrics and Gynaecology, University of Edinburgh, Centre for Reproductive Biology, 37 Chalmers Street, Edinburgh EH3 9EW, UK
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some previous attempts to produce tetraploids experimentally have resulted in a proportion of treated embryos becoming 2n/4n mosaics at a frequency which may be as high as 20%, when using cytochalasin B as a fusigenic stimulus and cytogenetic techniques to identify putative tetraploid embryos. To investigate the possible occurrence of 4n/2n mosaicism, tetraploid embryos were produced by electrofusion, a process which allows adjacent blastomeres at the 2-cell stage to fuse following exposure to electric field pulses. Embryos used for electrofusion were hemizygous for a transgene consisting of approximately 1000 copies of the mouse β-globin gene. After in situ hybridization, one hybridization signal is expected per diploid genome. Tetraploid cells in 7·5-, 8·5-, 9·5- and 10·5-day-old conceptuses were distinguished from diploid cells by performing in situ hybridization on histological sections. The frequency of nuclei with two hybridization signals in the ‘hemizygous’ tetraploid embryos was compared to diploid embryos which were either hemizygous or homozygous for the β-globin transgene. Comparison of the frequency of nuclei with two hybridization signals between tissues of ‘hemizygous’ tetraploid conceptuses and homozygous diploid conceptuses showed no significant difference, which implies that the tissues in the tetraploid conceptuses were uniformly tetraploid. No evidence was found to suggest that electrofusion results in 2n/4n mosaicism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Beatty, R. A. & Fischberg, M. (1949). Spontaneous and induced triploidy in pre-implantation mouse eggs. Nature 163, 807808.CrossRefGoogle ScholarPubMed
Dyban, A. P. & Baranov, V. S. (1987). Cytogenetics of Mammalian Embryonic Development. Clarendon Press, Oxford.Google Scholar
Edwards, R. G. (1958). Colchicine induced heteroploidy in the mouse. II. The induction of tetraploidy and other types of heteroploidy. Journal of Experimental Zoology 137, 349362.CrossRefGoogle ScholarPubMed
Eglitis, M. A. (1980). Formation of tetraploid mouse blastocysts following blastomere fusion with polyethylene glycol. Journal of Experimental Zoology 213, 309313.CrossRefGoogle ScholarPubMed
Epstein, C. J. (1986). The Consequences of Chromosome Imbalance: Principles, Mechanisms and Models. Cambridge University Press, London.CrossRefGoogle Scholar
Golbus, M. S., Bachman, R., Wiltse, S. & Hall, B. D. (1976). Tetraploidy in a li veborn infant. Journal of Medical Genetics 13, 329332.CrossRefGoogle Scholar
Graham, C. F. (1971). Virus assisted fusion of embryonic cells. In Karolinska Symposia on Research Methods in Reproductive Endocrinology (ed. Diczfalusy, E.), pp. 154165. Stockholm.Google Scholar
Henery, C. C. & Kaufman, M. H. (1992). Relationship between cell size and nuclear volume in nucleated red blood cells of Cellularityly matched diploid and tetraploid mouse embryos. Journal of Experimental Zoology 261, 472478.CrossRefGoogle ScholarPubMed
Hogan, B., Costantini, F. & Lacey, E. (1986). Manipulating the Mouse Embryo: A Laboratory Manual. Section C, p. 126. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Kajii, T. & Niikawa, N. (1977). Origin of triploidy and tetraploidy in man: 11 cases with chromosome markers. Cytogenetics and Cell Genetics 18, 109125.CrossRefGoogle Scholar
Kaufman, M. H. & Webb, S. (1990). Postimplantation development of tetraploid mouse embryos produced by electrofusion. Development 110, 11211132.CrossRefGoogle ScholarPubMed
Kaufman, M. H. (1991 a). Histochemical identification of primordial germ cells and differentiation of the gonads in homozygous tetraploid mouse embryos. Journal of Anatomy 179, 169181.Google ScholarPubMed
Kaufman, M. H. (1991 b). New insights into triploidy and tetraploidy, from an analysis of model systems for these conditions. Human Reproduction 6, 816.CrossRefGoogle ScholarPubMed
Keighren, M. & West, J. D. (1992). Analysis of cell ploidy in histological sections of mouse tissues by DNA-DNA in situ hybridization with digoxygenin labelled probes. Histochemical Journal (in the press).Google Scholar
Kubiak, J. Z. & Tarkowski, A. K. (1985). Electrofusion of mouse blastomeres. Experimental Cell Research 157, 561566.CrossRefGoogle ScholarPubMed
Kurischko, A. & Berg, H. (1986). Electrofusion of rat and mouse blastomeres. Bioelectrochemistry & Bioenergetics 15, 513519. A section of: Journal of Electroanalytical Chemistry, and constituting Vol. 221 (1986).CrossRefGoogle Scholar
Lo, C. (1983). Localization of low abundance DNA sequences in tissue sections by in situ hybridization. Journal of Cell Science 81, 143162.CrossRefGoogle Scholar
Lyon, M. F. (1970). X-ray induced dominant lethal mutations in male guinea-pigs, hamsters and rabbits. Mutation Research 10, 133140.CrossRefGoogle ScholarPubMed
Modlinski, J. A. (1978). Transfer of embryonic nuclei to fertilized mouse eggs and development of tetraploid blastocysts. Nature 273, 466467.CrossRefGoogle ScholarPubMed
Morris, R. G., Arends, M. J., Bishop, P. E., Sizer, K., Duvall, E. & Bird, C. C. (1990). Sensitivity of digoxygenin and biotin labelled probes for detection of human papilloma virus by in situ hybridization. Journal of Clinical Pathology 43, 800805.CrossRefGoogle Scholar
Niemierko, A. (1981). Postimplantation development of CB-induced triploid mouse embryos. Journal of Embryology and Experimental Morphology 66, 8189.Google ScholarPubMed
O'Neill, G. T., Speirs, S. & Kaufman, M. H. (1990). Sexchromosome constitution of post-implantation tetraploid mouse embryos. Cytogenetics and Cell Genetics 53, 191195.CrossRefGoogle Scholar
Ozil, J-P. & Modlinski, J. A. (1986). Effects of electric field on fusion rate and survival of 2-cell rabbit embryos. Journal of Embryology and Experimental Morphology 96, 211228.Google ScholarPubMed
Pajares, I. L., Delicado, A., Dias de, Bustamente A., Pellicer, A., Pinel, I., Pardo, M. & Martin, M. (1990). Tetraploidy in a liveborn infant. Journal of Medical Genetics 27, 782783.CrossRefGoogle Scholar
Petzoldt, U. (1991). Development profile of glucose phosphate isomerase alloenzyme in parthenogenetic and tetraploid mouse embryos. Development 112, 471476.CrossRefGoogle Scholar
Pitt, D., Leversha, M., Sinfield, C., Campbell, P., Anderson, R., Bryan, D. & Rogera, J. (1981). Tetraploidy in a liveborn infant with spina bifida and other anomalies. Journal of Medical Genetics 18, 309311.CrossRefGoogle Scholar
Pratt, H. P. M. (1987). Isolation, culture and manipulation of mouse embryos. In: Mammalian Development: A Practical Approach (ed. Monk, M.), pp. 2942. Oxford, England: IRL Press Limited.Google Scholar
Scarbrough, P. R., Hersh, J., Kukolich, M. K., Carroll, A. J., Finley, S. C., Hochberger, R., Wilkerson, S., Yen, F. F. & Althaus, B. W. (1984). Tetraploidy: A report of three liveborn infants. American Journal of Medical Genetics 19, 2937.CrossRefGoogle Scholar
Sheppard, D. M., Fisher, R. A., Lawler, S. D. & Povey, S. (1982). Tetraploid conceptuses with three paternal contributions. Human Genetics 62, 371374.CrossRefGoogle Scholar
Shiono, H., Azumi, J-I., Fujiwara, M., Yamazaki, H. & Kikuchi, K. (1988). Tetraploidy in a 15 month old girl. American Journal of Medical Genetics 29, 543547.CrossRefGoogle Scholar
Snow, M. H. L. (1973). Tetraploid mouse embryos produced by cytochalasin B during cleavage. Nature 244, 513514.CrossRefGoogle ScholarPubMed
Snow, M. H. L. (1975). Embryonic development of tetraploid mice during the second half of gestation. Journal of Embryology and Experimental Morphology 34, 707721.Google ScholarPubMed
Snow, M. H. L. (1976). The immediate postimplantation development of tetraploid mouse blastocysts. Journals of Embryology and Experimental Morphology 35, 8186.Google ScholarPubMed
Surti, U., Szulman, A. E., Wagner, K., Leppert, M. & O'Brian, S. J. (1986). Tetraploid partial hydatidiform moles: two cases with a triple paternal contribution and a 92, XXXY karyotype. Human Genetics 72, 1521.CrossRefGoogle Scholar
Tarkowski, A. K., Witkowska, A. & Opas, J. (1977). Development of cytochalasin B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. Journal of Embryology and Experimental Morphology 41, 4764.Google ScholarPubMed
Thomson, J. A. & Solter, D. (1988). Transgenic markers for mammalian chimaeras. Roux's Archives of Development Biology 197, 6365.CrossRefGoogle Scholar
Warburton, D., Byrne, J. & Canki, N. (1991). Chromosome Anomalies and Prenatal Development: An Atlas. Oxford Monographs on Medical Genetics No. 21, Oxford: Oxford University Press.Google Scholar
Webb, S., De Vries, T. J. & Kaufman, M. H. (1992). The differential staining pattern of the X chromosome in the embryonic and extraembryonic tissues of postimplantation homozygous tetraploid mouse embryos. Genetical Research 59, 205214.CrossRefGoogle ScholarPubMed
Wilson, G. N., Vekemans, M. J. J. & Kaplan, P. (1988). MCA/MR syndrome in a female infant with tetraploidy mosaicism: review of the human polyploidy phenotype. American Journal Medical Genetics 30, 953961.CrossRefGoogle Scholar
Wroblewska, J. (1971). Developmental anomaly in the mouse associated with triploidy. Cytogenetics 10, 199207.CrossRefGoogle ScholarPubMed