Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T19:00:55.741Z Has data issue: false hasContentIssue false

Effects of a temperature-sensitive Minute mutation on gene expression in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Donald A. R. Sinclair
Affiliation:
Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 2A9Canada.
Thomas A. Grigliatti
Affiliation:
Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 2A9Canada.
Thomas C. Kaufman
Affiliation:
Department of Biology, Indiana University, Bloomington, Indiana, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Minute (M) lesions exhibit a striking propensity for interacting with many different mutations. In the past, few attempts have been made to explain these diverse phenomena. This study describes a variety of temperature-sensitive (ts) interactions exhibited by the ts third chromosome Minute mutation M(3)LS4Q-III (Q-III). Most of these interactions (i.e. those involving vg, cp, Dl, Dfd or Ly) reflect Q-III-induced enhancement of the respective mutant phenotypes at the restrictive temperature. However, Q-III also suppresses the extra-sex-comb phenotypes of Pc and Msc at 29 °C and evokes lethal and bristle traits when combined with J34e at the restrictive temperature. All of these interactions are characteristic of non-ts Minute lesions and thus they appear to be correlated with general physiological perturbations associated with the M syndrome. In addition, our findings show that mutations that affect ribosome production and/or function, namely su(f)ts67g and bbts−1, exhibit interactions comparable to those elicited by Q-III. Hence, in accordance with previous findings, we argue that most of the Q-III interactions can be attributed to reduced translational capacity at the restrictive temperature. Finally, reciprocal temperature shift studies were used to delineate TSPs for interactions between Q-III and vg (mid to late second instar), cp (about mid-third instar), Dfd (early third instar) and Dl (late second to mid third instar). We believe that these TSPs represent developmental intervals during which the respective gene products are utilized.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Bodenstein, D. (1950). The postembryonic development of Drosophila. In Biology of Drosophila (ed. by Demerec, M.), pp. 255367.John Wiley.Google Scholar
Cross, D. P. (1977). Temperature-sensitive periods for expression and suppression of lozenge mutants of Drosophila melanogaster. Genetics 86, s13.Google Scholar
Dudick, M. E., Wright, T. R. F. & Brothers, L. L. (1974). The developmental genetics of the temperature-sensitive aliele of the suppressor of forked, l(l)su(f)ts 67g, in Drosophila melanogaster. Genetics 76, 487510.CrossRefGoogle Scholar
Finnerty, V. G., Barton, L. M., Schalet, A., Elmer, W. A. & Smith, P. D. (1973). The suppressor-of-forked mutation: a putative protein synthesis mutant in Drosophila melanogaster. Genetics 74, s7980.Google Scholar
Gorini, L. & Beckwith, J. R. (1966). Suppression. Annual Review of Microbiology 20, 401422.CrossRefGoogle ScholarPubMed
Hannah-Alava, A. (1958). Developmental genetics of the posterior legs in Drosophila melanogaster. Genetics 43, 878905.CrossRefGoogle ScholarPubMed
Hansson, L., Lineruth, K. & Lambertsson, A. (1981). Effect of the l(1)su(f)ts 67g mutation of Drosophila melanogaster on glue protein synthesis. Wilhelm Roux's Archives of Developmental Biology 190, 308312.CrossRefGoogle Scholar
Harnly, M. H. (1936). The temperature-effective periods and the growth curves for length and area of the vestigial wings of Drosophila melanogaster. Genetics 21, 84103.CrossRefGoogle ScholarPubMed
Hayashi, S., Gillam, I. C., Delaney, A. D., Dunn, R., Tener, G. M., Grioliatti, T. A. & Suzuki, D. T. (1980). Hybridization of tRNAs of Drosophila melanogaster to polytene chromosomes. Chromosomu (Berlin) 76, 6584.CrossRefGoogle ScholarPubMed
Huang, S. L. & Baker, B. S. (1976). The mutability of Minute loci of Drosophila melanogaster with ethyl methanesulphonate. Mutation Research 34, 407414.CrossRefGoogle Scholar
Kaufman, T. C., Tasaka, S. E. & Suzuki, D. T. (1973). The interaction of two complex loci, zeste and bithorax in Drosophila melanogaster. Genetics 75, 299321.CrossRefGoogle ScholarPubMed
Lambertsson, A. (1975). The ribosomal proteins of Drosophila melanogaster. V. Analysis by two-dimensional gel electrophoresis of the ribosomal proteins of the temperature-sensitive lethal aliele of suppressor of forked, l(1)su(f)ts 67g: a putative ribosomal protein mutant. Molecular and General Genetics 139, 145146.CrossRefGoogle Scholar
Larsen, T. M., Miller, R. C. Jr., Spiegelman, G. B., Hayashi, S., Tener, G. M., Sinclair, D. A. R. & Grigliatti, T. A. (1982). RNA-DNA hybridization analyses of tRNA3bVal in Drosophila melanogaster. Molecular and General Genetics 185, 390396.CrossRefGoogle Scholar
Lewis, R. A., Wakimoto, A. T., Denell, R. E. & Kaufman, T. C. (1980). Genetic analysis of the antennapedia gene complex (ANT-C) and adjacent chromosmal regions of Drosophila melanogaster. II. Polytene chromosome segments 84A-84B1.2. Genetics 95, 383397.CrossRefGoogle Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington Publication, no. 627.Google Scholar
Lindsley, D. L., Sandler, L., Baker, B. S., Carpenter, A. T. C., Denell, R. E., Hall, J. C., Jacobs, N. A., Miklos, G. L. G., Davis, B. K., Gethmann, R. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawa, H., Perry, D. M. & Gould-Somero, M. (1972). Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71, 157184.CrossRefGoogle ScholarPubMed
Mange, A. P. & Sandler, L. (1973). A note on the maternal effect mutants daughterless and abnormal oocyte in Drosophila melanogaster. Genetics 73, 7386.CrossRefGoogle ScholarPubMed
Procunier, J. D. & Williamson, J. H. (1974). Temperature-sensitive bobbed mutants in Drosophila melanogaster. Developmental Biology 39, 198209.Google ScholarPubMed
Ritossa, F. M., Atwood, K. C. & Spiegelman, S. (1966 a). A molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of ‘ribosomal’ DNA. Genetics 54, 819834.CrossRefGoogle ScholarPubMed
Ritossa, F. M., Atwood, K. C. & Spieoelman, S. (1966 b). On the redundancy of DNA complementary to amino acid transfer RNA and its absence from the nucleolar organizer region of Drosophila melanogaster. Genetics 54, 663676.CrossRefGoogle ScholarPubMed
Russell, M. A. (1974). Pattern formation in the imaginai discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Developmental Biology 40, 2439.CrossRefGoogle Scholar
Schalet, A. (1972). Report of A. Schalet. Drosophila Information Service 49, 3637.Google Scholar
Schultz, J. (1929). The Minute reaction in the development of Drosophila melanogaster. Genetics 14, 366419.CrossRefGoogle ScholarPubMed
Schultz, J. (1934). The manifestation of dominants in the triploid. Drosophila Information Service 1, 55.Google Scholar
Sinclair, D. A. R. (1977). Genetic and developmental studies of proximal segments of chromosome 3 of Drosophila melanogaster. Ph.D. Thesis, University of British Columbia.Google Scholar
Sinclair, D. A. R., Suzuki, D. T. & Grigliatti, T. A. (1981). Genetic and developmental analysis of a temperature-sensitive Minute mutation of Drosophila melanogaster. Genetics 97, 581606.CrossRefGoogle ScholarPubMed
Suzuki, D. T. (1970). Temperature-sensitive mutations in Drosophila melanogaster. Science 170, 695706.CrossRefGoogle ScholarPubMed
Suzuki, D. T., Kaufman, T. C. K., Falk, D. R. & The U.B.C. Drosophila Research Group. (1976). Conditionally expressed mutations in Drosophila melanogaster. In Genetics and Biology of Drosophila, vol. 1 a. (ed. Ashburner, M. and Novitski, E.), pp. 207263. Academic Press.Google Scholar
Tarasoff, M. & Suzuki, D. T. (1970). Temperature-sensitive mutations in Drosophila melanogaster. VI. Temperature effects on development of sex-linked recessive lethals. Developmental Biology 23, 492509.CrossRefGoogle ScholarPubMed
White, B. (1974). An analysis of tRNAs in five Minnies and two suppressors. Drosophila Information Service 51, 5859.Google Scholar
Wilson, T. G. (1980). Studies on the female-sterile phenotype of l(1)su(f)ts 67a, a temperature-sensitive aliele of the suppressor of forked mutation in Drosophila melanogaster. Journal of Embryology and Experimental Morphology 55, 247256.Google Scholar