Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T16:26:16.302Z Has data issue: false hasContentIssue false

The effect of homozygous deletions upon heterozygote formation in bacteriophage T4D

Published online by Cambridge University Press:  14 April 2009

Ingerid Kvelland
Affiliation:
Department of Genetics, University of Washington, Seattle, Washington
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Experiments were designed to investigate the effect of homozygous deletions upon the frequency and the average length of heterozygous regions in bacteriophage T4D. A long deletion, rdf41, which covers at least the whole rII region, was found to increase the heterozygosity for r48, while no increase was observed when a short deletion was employed. The long deletion was found to increase the average length of amber-HETs by a length approximately the size of the rII region.

A drastic reduction in average HET length was found in FUDR crosses homozygous for the long deletion rdf41, indicating that the type of HET that does increase in FUDR is very short.

In the cross with no deletion in either parent, premature lysis HETs were found to be much longer than normal lysis HETs. Assuming that redundancy HETs are long compared to heteroduplex HETs this result indicates that redundancy HETs are made earlier in the latent period than heteroduplex HETs. A fluctuation in HET frequencies was found for different markers, especially in FUDR.

About half of all HETs, both in normal crosses and in FUDR crosses, was found to be parental for outside markers.

In non-FUDR crosses, polarized segregation was shown by 12 out of 27 multi-marker HETs after normal lysis and 5 out of 22 multi-marker HETs after premature lysis. In FUDR crosses, 24 out of 77 multi-marker HETs showed polarity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

References

REFERENCES

Adams, M. H. (1959). Bacteriophages. New York: Interscience Publishers.CrossRefGoogle Scholar
Barricelli, N. A. (1960). An analytical approach to the problems of phage recombination and reproduction. I. Multiplicity reactivation and the nature of radiation damages. Virology 11, 99135.CrossRefGoogle Scholar
Barricelli, N. A. & Doermann, A. H. (1960). An analytical approach to the problems of phage recombination and reproduction. II. High negative interference. Virology 11, 136155.CrossRefGoogle Scholar
Berger, H. (1965). Genetic analysis of T4D phage heterozygotes produced in the presence of 5-fluorodeoxyuridine. Genetics 52, 729746.CrossRefGoogle ScholarPubMed
Chase, M. & Doermann, A. H. (1958). High negative interference over short segments of the genetic structure of bacteriophage T4. Genetics 43, 332353.CrossRefGoogle ScholarPubMed
Cohen, S. S., Flaks, J. G., Barner, H. D., Loeb, M. R. & Lichtenstein, J. (1958). The mode of action of 5-fluorouracil and its derivatives. Proc. natn. Acad. Sci. U.S.A. 44, 10041012.CrossRefGoogle ScholarPubMed
Doermann, A. H. & Hill, M. B. (1953). Genetic structure of bacteriophage T4 as described by recombination studies of factors influencing plaque morphology. Genetics 38, 7990.CrossRefGoogle ScholarPubMed
Doermann, A. H. & Boehner, L. (1963). An experimental analysis of bacteriophage T4 heterozygotes. I. Mottled plaques from crosses involving six r II loci. Virology 21, 551567.CrossRefGoogle Scholar
Edgar, R. S., Feynman, R. P., Klein, S., Lielausis, I. & Steinberg, C. M. (1962). Mapping experiment with r mutants of bacteriophage T4D. Genetics 47, 179186.CrossRefGoogle Scholar
Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy De La Tour, E., Chevally, R., Edgar, R. S., Susman, M., Denhardt, G. H. & Lielausis, A. (1963). Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harb. Symp. quant. Biol. 28, 375392.CrossRefGoogle Scholar
Hershey, A. D. & Chase, M. (1951). Genetic recombination and heterozygosis in bacterio-phage. Cold Spring Harb. Symp. quant. Biol. 16, 471479.CrossRefGoogle Scholar
Hershey, A. D. & Rotman, R. (1949). Genetic recombination between host-range and plaque-type mutants of bacteriophage in single bacterial cells. Genetics 34, 4471.CrossRefGoogle ScholarPubMed
Hertel, R. (1965). Gene function of heterozygotes in phage T4. Z. VererbsLehre. 96, 105115.Google Scholar
Kozinski, A. W. & Kozinski, P. B. (1963). Fragmentary transfer of P32-labeled parental DNA to progeny phage. II. The average size of the transferred parental fragment. Two-cycle transfer. Repair of the polynucleotide chain after fragmentation. Virology 20, 213229.CrossRefGoogle Scholar
Kozinski, A. W. & Kozinski, P. B. (1964). Replicative fragmentation in T4 bacteriophage DNA. II. Biparental molecular recombination. Proc. natn. Acad. Sci. U.S.A. 52, 211218.CrossRefGoogle ScholarPubMed
Levinthal, C. (1954). Recombination in phage T2: its relationship to heterozygosis and growth. Genetics 39, 169184.CrossRefGoogle ScholarPubMed
Levinthal, C. (1959). Bacteriophage genetics. In The Viruses, vol. II (ed. Burnet, F. M. and Stanley, W. M.), pp. 281317. New York: Academic Press.CrossRefGoogle Scholar
MacHattie, L. A., Ritchie, D. A., Thomas, C. A. Jr., & Richardson, C. C. (1967). Terminal repetition in permuted T2 bacteriophage DNA molecules. J. molec. Biol. 23, 355363.CrossRefGoogle ScholarPubMed
Nomura, M. & Benzer, S. (1961). The nature of the ‘deletions’ mutants in the rII region of phage T4. J. molec. Biol. 3, 684691.CrossRefGoogle ScholarPubMed
Richardson, C. C., Lehman, I. R. & Kornberg, A. (1964). A deoxyribonucleic acid phos-phatase-exonuclease from Escherichia coli. II. Characterization of the exonuclease activity. J. biol. Chem. 239, 251258.CrossRefGoogle ScholarPubMed
Séchaud, J., Streisinger, G., Emrich, J., Newton, J., Lanford, H., Reinhold, H. & Stahl, M. M. (1965). Chromosome structure in phage T4. II. Terminal redundancy and heterozygosis. Proc. natn. Acad. Sci. U.S.A. 54, 13331339.CrossRefGoogle ScholarPubMed
Streisinger, G., Edgar, R. S. & Denhardt, G. H. (1964). Chromosome structure in phage T4. I. Circularity of the linkage map. Proc. natn. Acad. Sci. U.S.A. 51, 775779.CrossRefGoogle ScholarPubMed
Streisinger, G., Emrich, J. & Stahl, M. M. (1967). Chromosome structure in phage T4. III. Terminal redundancy and length determination. Proc. natn. Acad. Sci. U.S.A. 57, 292295.CrossRefGoogle ScholarPubMed
Thomas, C. A. Jr., & MacHattie, L. A. (1964). Circular T2 DNA molecules. Proc. natn. Acad. Sci. U.S.A. 52, 12971301.CrossRefGoogle ScholarPubMed
Vigier, P. (1966). Rôle des hétérozygotes internes dans la formation de génome double-recombinants chez le bactériophage T4. C. r. hebd. Séanc. Acad. Sci., Paris, D 263, 20102013.Google Scholar
Wiemann, J. (1965). Zur Charakterisierung von Heterozygotes dem Phagen T4. Z. Vererbs-Lehre. 97, 81101.Google Scholar
Womack, F. (1965). Cross-reactivation differences in bacteriophage T4D. Virology 26, 758761.Google ScholarPubMed