Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T08:44:48.872Z Has data issue: false hasContentIssue false

Dosage compensation and sex-chromatin in non-mammals

Published online by Cambridge University Press:  14 April 2009

A. G. Cock
Affiliation:
Agricultural Research Council Poultry Research Centre, King's Buildings, Edinburgh 9
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Inactivation of one X chromosome in somatic cells of female mammals is a form of dosage compensation of sex-linked genes, but the mechanism is entirely different from that operating in Drosophila. The latter is designated as dosage compensation sensu strictu.

2. There is no dosage compensation of barred, sex-linked dilution or slow-feathering in domestic fowls, of almond or faded in pigeons, or of cinnamon in canaries. Among Lepidoptera the same is true of sex-linked melanism in Lymantria monacha and of a locus controlling haemolymph colour in Choritoneura spp. There is no positive evidence that dosage compensation occurs outside Drosophila and mammals.

3. Sex-chromatin in female birds (heterogametic) has been reported by several authors; the genetical evidence is against the possibility that this represents (as in mammals) an inactivated X chromosome. Sex-chromatin in the heterogametic sex also occurs in some (not all) Lepidoptera and Heteroptera; in Heteroptera it usually represents a heteropyknotic Y chromosome.

4. Some complications in Muller's theory of dosage compensation sensu strictu are discussed. Not all ‘compensatory modifiers’ are necessarily sex-linked.

5. The problem of dosage compensation in species with impaternate males is discussed; fused in Habrobracon is not compensated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1964

References

REFERENCES

Van, Albada M. & Kuit, A. R. (1960). Een geslachtsgebonden verdunningsfactor voor veerkleur bij Witte Leghorns. Genen en Phaenen, 5, 19.Google Scholar
Ashley, D. J. B. & Theiss, E. A. (1959). Nuclear sex in species showing male homogamety. Anat. Rec. 135, 115120.CrossRefGoogle ScholarPubMed
Asmundson, V. S. (1950). Sex-linkage in the turkey. J. Hered. 41, 205207.CrossRefGoogle ScholarPubMed
Asmundson, V. S. & Abbott, U. K. (1961). Dominant sex-linked late feathering in the turkey. J. Hered. 52, 99104.CrossRefGoogle Scholar
Beckert, W. H. (1962). Sex chromatin in non-mammalian vertebrates. Amer. Zool. 2, 505506.Google Scholar
Beermann, W. (1956). Nuclear differentiation and functional morphology of chromosome Cold Spr. Harb. Symp. quant. Biol. 21, 217232.CrossRefGoogle Scholar
Biggs, P. M. & Payne, L. N. (1961). Pathological changes following inoculation of chick embryos with adult cells. I. Spleen cells. Immunology, 4, 2437.Google Scholar
Bridges, C. B. & Brehme, K. S. (1944). The mutants of Drosophila melanogaster. Publ. Carneg. Instn, No. 552.Google Scholar
Van Brink, J. (1959). L'expression morphologique de la diagamétie chez les sauropsidés et les monotrèmes. Chromosoma, 10, 172.CrossRefGoogle Scholar
Cock, A. G. (1953). The interpretation of autosexing. J. Genet. 51, 421433.CrossRefGoogle Scholar
Cock, A. G. & Morton, J. R. (1963). Maternal and sex-linked effects on size and conformation in domestic fowl. Heredity, 18, 337350.CrossRefGoogle ScholarPubMed
Cole, R. K. & Jeffers, T. K. (1963). Allelism of sex-linked silver and partial albinism. Poult. Sci. 42, 1260.Google Scholar
Danforth, C. H. (1929). Two factors influencing feathering in chickens. Genetics, 14, 254269.CrossRefGoogle ScholarPubMed
Danforth, C. H. (1939). Direct control of avian colour pattern by pigmentoblasts. J. Hered. 30, 173176.CrossRefGoogle Scholar
Davidson, R. G., Nitowsky, H. M. & Childs, B. (1963). Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc. nat. Acad., Sci., Wash., 50, 481485.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1957). The X-chromosome in the larval salivary glands of Drosophila insularis × Drosophila tropicalis. Chromosoma, 8, 691698.CrossRefGoogle ScholarPubMed
Drescher, W. & Rothenbuhler, W. C. (1963). Gynandromorph production by egg-chilling cytological mechanism in honey bees. J. Hered. 54, 195201.CrossRefGoogle Scholar
Gans, M. (1952). Étude génétique et physiologique de mutant z de Drosophila melanogaster. Bull. biol. France et Belg., Suppl. 38, 190.Google Scholar
Geitler, L. (1939). Das Heterochromatin der Geschlechtschromosomen bei Heteropteren. Chromosoma, 1, 197229.CrossRefGoogle Scholar
Gill, A. K. (undated). Cinnamon Inheritance in Canaries. London: Cage Birds.Google Scholar
Goldschmidt, R. B. (1921). Erblichskeitstudien an Schmetterlingen III. Der Melanismus der Nonne, Lymantria monacha L. Z. indukt. Abstamm.- u. VererbLehre, 25, 89163.Google Scholar
Goldschmidt, R. B. (1938). Physiological Genetics. New York: McGraw-Hill.CrossRefGoogle Scholar
Goldschmidt, R. B. (1954). Different philosophies of genetics. Proc. 8th int. Congr. Genet. Stockholm, 1, 8399.Google Scholar
Goldschmidt, R. B. (1955). Theoretical Genetics. Univ. California Press.Google Scholar
Gordon, M. (1957). Physiological genetics of fishes: In: The Physiology of Fishes (Brown, M. E., ed.). Vol. 2, pp. 431501, New York: Academic Press.CrossRefGoogle Scholar
Grosch, D. S. (1945). The relation of cell size and organ growth to mortality in Habrobracon. Growth, 9, 117.Google Scholar
Hollander, W. F. (1942). Autosexing in the domestic pigeon. J. Hered. 33, 135140.CrossRefGoogle Scholar
Hollander, W. F. (1944). Mosaic effects in domestic birds. Quart. Rev. Biol. 19, 285307.CrossRefGoogle Scholar
Hollander, W. F. & Cole, L. J. (1940). Somatic mosaics in the domestic pigeon. Genetics, 25, 1640.CrossRefGoogle ScholarPubMed
Ishizaki, H. & Kosin, I. L. (1960). Sex chromatin in early chick embryos. Exp. Cell Res. 21, 197200.CrossRefGoogle ScholarPubMed
Jerome, F. N. (1959). Colour inheritance in geese. Canad. J. Genet. Cytol. 1, 135141.CrossRefGoogle Scholar
Jucci, C. (1948). Physiogenetics in silkworms. Proc. 8th Int. Congr. Genet. Stockholm, 286297.Google Scholar
Lewis, E. B. (1950). The phenomenon of position effect. Adv. Genet. 3, 73116.CrossRefGoogle ScholarPubMed
Lieb, M. (1942). The production of I-IV translocations and a preliminary study of dosage compensation in Drosophila melanogaster. M. A. Thesis, Indiana.Google Scholar
Lühmann, M. (1954). Uber die Vererbung der Färbung bei Gansen. Arch. Geflügelk. 18, 7275.Google Scholar
Lyon, M. F. (1963). Attempts to test the inactive-X theory of dosage compensation in mammals. Genet. Res. Camb. 4, 93103.CrossRefGoogle Scholar
Mackenson, O. (1955). Further studies on a lethal series in the honey bee. J. Hered. 46, 7274.CrossRefGoogle Scholar
Mckusick, V. A. (1962). The X chromosome of man. Quart. Rev. Biol. 37, 69175.CrossRefGoogle ScholarPubMed
Miles, C. P. & Storey, S. D. (1962). Nuclear chromocentre of cultured chicken cells. Exp. Cell Res. 27, 377381.CrossRefGoogle Scholar
Moore, K. L. & Hay, J. C. (1961). Sexual dimorphism of intermitotic nuclei of birds. Anat. Rec. 139, 315.Google Scholar
Muller, H. J. (1932). Further studies on the nature and cause of gene mutations. Proc. 6th Int. Congr. Genet, 1, 213255.Google Scholar
Muller, H. J. (1950). Evidence of the precision of genetic adaptation. Harvey Lect. 63, 165229.Google Scholar
Munro, S. S. (1946). A sex-linked true breeding blue plumage colour. Poult. Sci. 25, 408409.Google Scholar
O'Brien, R. (1956). Deoxyribose nucleic acid in a haploid-diploid species (Steatococcus tuberculatus Morrison). Chromosoma, 8, 229259.CrossRefGoogle Scholar
Ohno, S., Kaplan, W. D. & Kinosita, R. D. (1959). Formation of the sex-chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp. Cell Res. 18, 415418.CrossRefGoogle ScholarPubMed
Ohno, S., Kaplan, W. D. & Kinosita, R. (1960). On the sex-chromatin of Gallus domesticus. Exp. Cell Res. 19, 180183.CrossRefGoogle ScholarPubMed
Risler, H. (1954). Die somatische Polyploidie in der Entwicklung der Honigbiene (Apis mellifica L.) und die Wiederherstellung der Diploidie bei den Drohnen. Z. Zellforsch. 41, 178.CrossRefGoogle Scholar
Robertson, F. W. & Reeve, B. C. R. (1953). Studies in quantitative inheritance, IV. The effects of substituting chromosomes from selected strains in different genetic backgrounds in Drosophila melanogaster. J. Genet. 51, 586610.CrossRefGoogle Scholar
Rothenbuhler, W. C. (1957). Diploid male tissue as new evidence on sex-determination in honey bees. J. Hered. 48, 160168.CrossRefGoogle Scholar
Rowley, J., Muldal, S., Gilbert, C. W., Lajtha, L. G., Lindsten, J., Fraccaro, M. & Kaigser, R. (1963). Synthesis of deoxyribosenucleic acid on X-chromosomes of an XXXXY male. Nature, Lond., 197, 251252.CrossRefGoogle Scholar
Russell, L. B. (1963). Mammalian X-chromosome action: inactivation limited in spread and in region of origin. Science, 140, 976978.CrossRefGoogle ScholarPubMed
Sanderson, A. R. (1932). The cytology of parthenogenesis in Tenthredinidae. Genetica, 14, 321493.CrossRefGoogle Scholar
Schmid, W. (1962). DNA replication patterns of the heterochromosomes in Gallus domesticus. Cytogenetics, 1, 344352.CrossRefGoogle ScholarPubMed
Schultz, J. (1935). Aspects of the relation between genes and development in Drosophila. Amer. Nat. 69, 3054.CrossRefGoogle Scholar
Serebrovsky, A. S. (1925). Somatic segregation in domestic fowl. J. Genet. 16, 3342.CrossRefGoogle Scholar
Sheppard, P. M. (1961). Some contributions to population genetics resulting from the study of the Lepidoptera. Advanc. Genet. 10, 165216.CrossRefGoogle Scholar
Siegel, P. B., Mueller, C. D. & Craig, J. V. (1957). Some phenotypic differences among homozygous, heterozygous and hemizygous late-feathering chicks. Poult. Sci. 36, 232239.CrossRefGoogle Scholar
Smith, S. G. (1945). Heteropyknosis as a means of diagnosing sex. J. Hered. 36, 194196.CrossRefGoogle Scholar
Speicher, B. R. (1935). Cell size and chromosomal types in Habrobracon. Amer. Nat. 69, 7980.Google Scholar
Stehr, G. (1959). Haemolymph polymorphism in a moth and the nature of sex-controlled inheritance. Evolution, 13, 537560.CrossRefGoogle Scholar
Steinberg, A. G. (1941). Studies on modifier of bar. A mutant which affects the expression of the bar mutation of Drosophila melanogaster. Genetics, 26, 440451.CrossRefGoogle Scholar
Stern, C. (1929). Ueber die additive Wirkung multipler Allele. Biol. Zbl. 49, 261290.Google Scholar
Stern, C. (1943). Genic action as studied by means of effects of different alleles and combinations of alleles. Genetics, 28, 441475.CrossRefGoogle ScholarPubMed
Stern, C. (1960). Dosage compensation—development of a concept and new facts. Canad. J. Genet. Cytol. 2, 105118.CrossRefGoogle Scholar
Suomolainen, E. (1950). Parthogenesis in animals. Adv. Genet. 3, 193253.CrossRefGoogle Scholar
Taylor, T. G. & Warner, C. (1961). Genetics for Budgerigar Breeders. London: Iliffe.Google Scholar
Werret, W. F., Candy, A. J., Ring, O. J. L. & Sheppard, P. M. (1959). Semi-albino: a third sex-linked allelomorph of silver and gold in the fowl. Nature, Lond., 184, 480.CrossRefGoogle Scholar
Whiting, P. W. (1932). Mutants in Habrobracon. Genetics, 17, 130.CrossRefGoogle ScholarPubMed
Whiting, P. W. (1943 a). Androgenesis in the parasitic wasp Habrobracon. J. Hered. 34, 355366.CrossRefGoogle Scholar
Whiting, P. W. (1943 b). Multiple alleles in complementary sex determination of Habrobracon. Genetics, 28, 365382.CrossRefGoogle ScholarPubMed
Whiting, P. W. (1945). The evolution of male haploidy. Quart. Rev. Biol. 20, 231260.CrossRefGoogle ScholarPubMed
Whiting, P. W. (1960). Polyploidy in Mormoniella. Genetics, 45, 949970.CrossRefGoogle ScholarPubMed