Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T16:46:23.730Z Has data issue: false hasContentIssue false

Distribution and structure of cloned P elements from the Drosophila melanogaster P strain π2

Published online by Cambridge University Press:  14 April 2009

Kevin O'Hare*
Affiliation:
Department of Biochemistry, Imperial College of Science, Technology & Medicine, London SW7 2AZ, U.K.
Alan Driver
Affiliation:
Department of Biochemistry, Imperial College of Science, Technology & Medicine, London SW7 2AZ, U.K.
Stephen McGrath
Affiliation:
Department of Biochemistry, Imperial College of Science, Technology & Medicine, London SW7 2AZ, U.K.
Dena M. Johnson-Schiltz
Affiliation:
Genetics Laboratory, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

P transposable elements of Drosophila melanogaster cloned from the strong P strain π2 have been analysed. The structures and chromosomal locations of 26 of the 30–50 elements estimated to be present in π2 have been determined. At one location two elements are inserted 100 base pairs (bp) apart, and in a second location two elements are only separated by the 8 bp duplicated upon P-element insertion. In addition to 2.9 kilobasepair (kbp) elements, elements with 14 different internal deletions from 1.3 to 2.3 kbp in size have been isolated. There are 7 copies of the 2–9 kbp element, 2 copies each of 5 internally deleted elements and a single copy of 9 internally deleted elements. One of the elements found twice is the KP element, which may play a role in the regulation of hybrid dysgenesis in strains which contain many copies of this element. Apart from internal deletions the elements are extremely homogeneous in DNA sequence, with only 2 single base polymorphisms detected twice each in over 16 kbp of P-element sequence. Although transpositions are infrequent in an inbred P cytotype strain such as π2, the distribution of these cloned elements indicates that when the genomic library was made, the strain was polymorphic with respect to element location. The distribution and structures of the element are discussed with respect to models for regulation of P-element transposition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Biemont, C.Ronsseray, S.Anxolabehere, D.Izaabel, H. & Gautier, C. (1990). Localization of P elements, copy number regulation and cytotype determination in Drosophila melanogaster. Genetical Research 56, 314.Google ScholarPubMed
Bingham, P. M.Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of P-M hybrid dysgenesis: the role of the P element, a strain specific transposon family. Cell 29, 9951004.CrossRefGoogle Scholar
Black, D. M.Jackson, M. S.Kidwell, M. G. & Dover, G. A. (1987). KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO Journal 6, 41254135.CrossRefGoogle ScholarPubMed
Eggleston, W. B.Johnson-Schlitz, D. M. & Engels, W. R. (1988). P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331, 368370.CrossRefGoogle Scholar
Engels, W. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility. Genetical Research 33, 219236.CrossRefGoogle Scholar
Engels, W. R.Preston, C. R.Thompson, P. & Eggleston, W. B. (1986). In situ hybridization to Drosophila salivary chromosomes with biotinylated probes and alkaline phosphatase. Focus 8, 68.Google Scholar
Engels, W. R. (1989). P elements in Drosophila. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 437484. American Society for Microbiology, Washington D.C.Google Scholar
Engels, W. R.Johnson-Schlitz, D. M.Eggleston, W. B. & Sved, J. (1990). High frequency P element loss in Drosophila is homolog dependent. Cell 62, 515525.CrossRefGoogle ScholarPubMed
Heath, E. M. & Simmons, M. J. (1991). Genetic and molecular analysis of repression in the P-M hybrid dysgenesis system of Drosophila melanogaster. Genetical Research 57, 213226.CrossRefGoogle Scholar
Jackson, M. S.Black, D. M. & Dover, G. A. (1988). Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster. Genetics 120, 10031013.CrossRefGoogle ScholarPubMed
Karess, R. E. & Rubin, G. M. (1984). Analysis of P transposable element functions in Drosophila. Cell 38, 135146.CrossRefGoogle ScholarPubMed
Kelly, M. R.Kidd, S.Berg, R. L. & Young, M W. (1987). Restriction of P-element insertions at the Notch locus of Drosophila melanogaster. Molecular and Cellular Biology 7, 15451548.Google Scholar
Kaufman, P. D.Doll, R. F. & Rio, D. C. (1989). Drosophila P element transposase recognizes internal P element DNA sequences. Cell 59, 359371.CrossRefGoogle ScholarPubMed
Kaufman, P. D. & Rio, D. C. (1991). Drosophila P element transposase is a transcriptional repressor in vitro. Proceedings of the National Academy of Sciences. U.S.A. 88, 26132617.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1985). Hybrid dysgenesis in Drosophila melanogaster: Nature and inheritance of P element regulation. Genetics 111, 337350.CrossRefGoogle ScholarPubMed
Landschulz, W. H.Johnson, P. & McKnight, S. L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 17591764.CrossRefGoogle ScholarPubMed
Laski, F. A.Rio, D. C. & Rubin, G. M. (1986). Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44, 719.CrossRefGoogle ScholarPubMed
LeMaitre, B. & Coen, D. (1991). P regulatory products repress in vivo the P promoter activity in P-lacz fusion genes. Proceedings of the National Academy of Sciences U.S.A. 88, 44194423.CrossRefGoogle Scholar
Misra, S. & Rio, D. C. (1990). Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell 62, 269284.CrossRefGoogle ScholarPubMed
Monastirioti, M.Hatzopoulos, P.Stamatis, N.Yannopoulos, G. & Louis, C. (1988). Co-habitation of KP and full length P elements in the genome of MR strains inducing P-M-like hybrid dysgenesis in Drosophila melanogaster. Molecular and General Genetics 215, 9499.CrossRefGoogle Scholar
Nitasaka, E.Mukai, T. & Yamazaki, T. (1987). Repressor of P elements in Drosophila melanogaster: cytotype determination by a defective P element carrying only open reading frames 0 through 2. Proceedings of the National Academy of Sciences U.S.A. 84, 76057608.CrossRefGoogle Scholar
O'Hare, K. & Rubin, G. M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 2535.CrossRefGoogle ScholarPubMed
Preston, C. R. & Engels, W. R. (1984). Movement of P elements within a P strain. Drosophila Information Service 60, 169170.Google Scholar
Raymond, J. D.Ojala, T. A.White, J. & Simmons, M. J. (1991). Inheritance of P element regulation in Drosophila melanogaster. Genetical Research 57, 227234.CrossRefGoogle ScholarPubMed
Rio, D. C. (1990). Molecular mechanisms regulating Drosophila P element transposition. Annual Review of Genetics 24, 543578.CrossRefGoogle ScholarPubMed
Rio, D. C. (1991). Regulation of Drosophila P element transposition. Trends in Genetics 7, 282287.CrossRefGoogle ScholarPubMed
Rio, D. CLaski, F. A. & Rubin, G. M. (1986). Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell 44, 2132.CrossRefGoogle ScholarPubMed
Robertson, H. M. & Engels, W. R. (1989). Modified P elements that mimic the P cytotype in Drosophila melanogaster. Genetics 123, 815824.CrossRefGoogle Scholar
Roiha, H.Rubin, G. M. & O'Hare, K. (1988). P element insertions and rearrangements at the singed locus of Drosophila melanogaster. Genetics 119, 7583.CrossRefGoogle ScholarPubMed
Ronsseray, S. & Anxolabehere, D. (1986). Chromosomal distribution of P transposable and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94, 433440.Google Scholar
Rubin, G. M.Kidwell, M. G. & Bingham, P. M. (1982). The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29, 987994.CrossRefGoogle ScholarPubMed
Sambrook, J.Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York.Google Scholar
Siebel, C. W. & Rio, D. C. (1990). Regulated splicing of the Drosophila P transposable element 3rd intron in vitro - somatic repression. Science 248, 12001208.CrossRefGoogle Scholar
Simmons, M. J.Raymond, J. D.Boedigheimer, M. J. & Zunt, J. R. (1987). The influence of nonautonomous P elements on hybrid dysgenesis in Drosophila melanogaster. Genetics 111, 869884.CrossRefGoogle Scholar
Simmons, M. J.Raymond, J. D.Rasmusson, K. E.Miller, L. M.McLarnon, C. F. & Zunt, J. R. (1990). Repression of P element mediated hybrid dysgenesis in Drosophila melanogaster. Genetics 124, 663676.CrossRefGoogle ScholarPubMed
Tsubota, S.Ashburner, M. & Schedl, P. (1985). P element induced control mutations at the r gene of Drosophila melanogaster. Molecular and Cellular Biology 5, 25672574.Google Scholar
Williams, J. A.Pappu, S. S. & Bell, J. B. (1988). Suppressible P element alleles of the vestigial locus in Drosophila melanogaster. Molecular and General Genetics 212, 370374CrossRefGoogle Scholar