Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T12:56:03.877Z Has data issue: false hasContentIssue false

Direct determination of retrotransposon transposition rates in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Sergey V. Nuzhdin*
Affiliation:
Department of Genetics, North Carolina State University, Raleigh, NC 27695–7614 and Institute of Molecular Genetics, Kurchatov Square 46, Moscow 123182, Russia
Trudy F. C. Mackay
Affiliation:
Department of Genetics, Box 7614, North Carolina State University, Raleigh NC 27695–7614
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rates of transposition and excision of the Drosophila melanogaster retrotransposon elements mdg3, 297, Doc, roo and copia were estimated directly, by in situ hybridization analysis of their cytological insertion sites in 31 replicates of a highly inbred line that had accumulated spontaneous mutations for approximately 160generations. Estimated transposition rates of Doc, roo and copia were, respectively, 4·2 × 10−5, 3·1 × 10−3 and 1·3 − 10−3; no transpositions of 297 nor mdg3 were observed. Rates of transposition of copia varied significantly among sublines. Excisions were only observed for roo elements, at a rate of 9·0 × 10−6 per element per generation. Copy number averaged over these element families increased 5·9 %; therefore, in these lines the magnitude of the forces opposing transposable element multiplication were weaker than transposition rates.

Type
Short Paper
Copyright
Copyright © Cambridge University Press 1994

References

Ashburner, M. (1989). Drosophila: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Berg, D. E. & Howe, M. M. (1989). Mobile DNA. Washington D.C.: American Society for Microbiology.Google Scholar
Biémont, C., Aouar, A. & Arnault, C. (1987). Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster. Nature 329, 742744.Google Scholar
Charlesworth, B. & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetical Research 42, 127.CrossRefGoogle Scholar
Charlesworth, B. & Langley, C. H. (1989). The population genetics of Drosophila transposable elements. Annual Review of Genetics 23, 251287.CrossRefGoogle ScholarPubMed
Charlesworth, B. & Lapid, A. (1989). A study of ten families of transposable elements on X chromosomes from a population of Drosophila melanogaster. Genetical Research 54, 113125.CrossRefGoogle ScholarPubMed
Charlesworth, B., Lapid, A. & Canada, D. (1992). The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. Genetical Research 60, 103114.CrossRefGoogle Scholar
Di Franco, C., Galuppi, D. & Junakovic, N. (1992). Genomic distribution of transposable elements among individuals of an inbred Drosophila line. Genetica 86, 111.Google Scholar
Eggleston, W. B., Johnson-Schlitz, D. M. & Engels, W. R. (1988). P-M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331, 368370.CrossRefGoogle ScholarPubMed
Finnegan, D. J. (1992). Transposable elements. In The Genome of Drosophila melanogaster (ed. Lindsley, D. L. and Zimm, G. G.), pp. 10961107. San Diego: Academic Press.CrossRefGoogle Scholar
Finnegan, D. J., Rubin, G. M., Young, H. W. & Hogness, D. S. (1978). Repeated gene families in Drosophila melanogaster. Cold Spring Harbor Symposia on Quantitative Biology 42, 10531060.CrossRefGoogle ScholarPubMed
Georgiev, G. P., Ilyin, Y. V., Chmeliauskaite, V. G., Ryskov, A. P., Kramerov, D. A., Skryabin, K. G., Krayev, A. S., Lukanidin, E. M. & Grigoryan, M. S. (1981). Mobile dispersed genetic elements and other repetitive DNA sequences in the genomes of Drosophila and mouse: transcription and biological significance. Cold Spring Harbor Symposia on Quantitative Biology 45, 641654.CrossRefGoogle ScholarPubMed
Harada, K., Yukuhiro, K. & Mukai, T. (1990). Transposition rates of movable genetic elements in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 87, 32483252.CrossRefGoogle ScholarPubMed
Lefevre, G. (1976). A photographic representation of the polytene chromosomes of Drosophila melanogaster salivary glands. In The Genetics and Biology of Drosophila, Vol 1a (ed. Ashburner, M. and Novitski, E.), pp. 3136. London: Academic Press.Google Scholar
Lim, J. K., Simmons, M. J., Raymond, J. D., Cox, N. M., Doll, R. F. & Gilbert, T. P. (1983). Proceedings of the National Academy of Sciences of the USA 80, 66246627.Google Scholar
Mackay, T. F. C., Lyman, R. F., Jackson, M. S., Terzian, C. & Hill, W. G. (1992). Polygenic mutation in Drosophila melanogaster: estimates from divergence among inbred strains. Evolution 46, 300316.CrossRefGoogle ScholarPubMed
Mackay, T. F. C., Fry, J. D., Lyman, R. F. & Nuzhdin, S. V. (1994). Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred lines. Genetics (in the press).CrossRefGoogle Scholar
Mevel-Ninio, M., Mariol, M. C. & Gans, M. (1989). Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovoD dominant female sterile mutations: molecular analysis of revertant alleles. European Molecular Biology Organization Journal 8, 15491558.CrossRefGoogle Scholar
Mukai, T. & Yamaguchi, O. (1974). The genetic structure of natural populations of Drosophila. XL Genetic variability in a natural population. Genetics 82, 6383.Google Scholar
O'Hare, K., Levis, R. & Rubin, G. M. (1983). Transcription of the white locus in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 80, 69176921.Google Scholar
Pasyukova, E. G. & Nuzhdin, S. V. (1993). Doc and copia instability in an isogenic Drosophila melanogaster stock. Molecular and General Genetics 240, 302306.CrossRefGoogle Scholar
Pierce, D. A. & Lucchesi, J. C. (1981). Analysis of a dispersed repetitive DNA sequence in isogenic lines of Drosophila melanogaster. Chromosoma 82, 471492.Google Scholar
Potter, S. S., Brorein, W. J., Dunsmuir, P. & Rubin, G. M. (1979). Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415427.CrossRefGoogle ScholarPubMed
Scherer, G., Tschudi, C., Perera, J., Delias, H. & Pirrotta, J. (1982). B104, a new dispersed repeated gene family in Drosophila melanogaster and its analogies with retroviruses. Journal of Molecular Biology 157, 435452.CrossRefGoogle ScholarPubMed
Sharp, P. M. & Li, W.-H. (1989). On the rate of DNA sequence evolution in Drosophila. Journal of Molecular Evolution 28, 398402.CrossRefGoogle ScholarPubMed
Shrimpton, A. E., Montgomery, E. A. & Langley, C. H. (1986). Om mutations in Drosophila ananassae are linked to insertions of a transposable element. Genetics 114, 125135.Google Scholar
Voytas, D. F. & Boeke, J. D. (1993). Yeast retrotransposons and tRNAs. Trends in Genetics 91, 421427.CrossRefGoogle Scholar
Woodruff, R. C., Blount, J. L. & Thompson, J. N. (1987). Hybrid dysgenesis is not a general release mechanism for DNA transpositions. Science 237, 12061207.Google Scholar
Young, M. V. & Schwartz, H. E. (1981). Nomadic gene families in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology 45, 629640.CrossRefGoogle ScholarPubMed