Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:02:11.673Z Has data issue: false hasContentIssue false

Differences in allele frequencies of Aat between high- and mid-rocky shore populations of Littorina saxatilis (Olivi) suggest selection in this enzyme locus

Published online by Cambridge University Press:  14 April 2009

Kerstin Johannesson*
Affiliation:
Tjärnö Marine Biological Laboratory, Pl. 2781, S-452 00 Strömstad, Sweden
Bo Johannesson
Affiliation:
Tjärnö Marine Biological Laboratory, Pl. 2781, S-452 00 Strömstad, Sweden
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Samples of the intertidal prosobranch Littorina saxatilis were collected along vertical transects from high- to mid-store levels at five different geographic locations of western Europe. Electrophoretic screening of ten metabolic enzymes revealed five highly polymorphic loci. Four of these showed no or few significant differences in allele frequencies between high- and mid-shore samples of Littorina saxatilis. The fifth locus, Aat (aspartate aminotransferase, EC 2.6.1.1), showed clinal variation in allele frequencies over the few metres of each transect, suggesting that this locus, or a coupled locus, is under selection with a slow allele (Aat100) favoured in mid-shore habitats and a faster allele (Aat120) selected for in the high littoral fringe.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Burton, R. S. (1983). Protein polymorphisms and genetic differentiation of marine invertebrate populations. Marine Biology Letters 4, 193206.Google Scholar
Endler, J. A. (1986). Natural Selection in the Wild. Princeton, N.J.: Princeton University Press.Google Scholar
Fish, J. D. & Sharp, L. (1985). The ecology of the periwinkle, Littorina neglecta Bearn. In The Ecology of Rocky Coasts (ed. Moore, P. G. and Seed, R.), pp. 143156. London: Hodder & Stoughton.Google Scholar
Fretter, V. & Graham, A. (1980). The prosobranch molluscs of Britain and Denmark. Part 5 – Littorinacea. Journal of Molluscan Studies (Suppl.) 7, 243284.Google Scholar
Gaines, M. S., Caldwell, J. & Vivas, A. M. (1974). Genetic variation in the mangrove periwinkle Littorina angulifera. Marine Biology 27, 327332.CrossRefGoogle Scholar
Hartl, D. L. (1980). Principle of Population Genetics. Sunderland, Mass.: Sinauer Associates.Google Scholar
Heller, J. (1975). The taxonomy of some British Littorina species, with notes on their reproduction (Mollusca: Prosobranchia). Zoological Journal of the Linnean Society 56, 131151.CrossRefGoogle Scholar
Janson, K. (1982). Phenotypic differentiation in Littorina saxatilis Olivi (Mollusca, Prosobranchia) in a small area on the Swedish west coast. Journal of Molluscan Studies 48, 167173.Google Scholar
Janson, K. (1983). Selection and migration in two distinct phenotypes of Littorina saxatilis in Sweden. Oecologia (Berl.) 59, 5861.CrossRefGoogle ScholarPubMed
Janson, K. (1985 a). Genetic and morphological variation within and between populations of Littorina angulifera from Florida. Ophelia 24, 125134.CrossRefGoogle Scholar
Janson, K. (1985 b). Genetic variation in three species of Caribbean periwinkles, Littorina angustior, L. lineolata, and L. ziczac (Gastropoda: Prosobranchia). Bulletin of Marine Science 37, 871879.Google Scholar
Janson, K. (1987 a). Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biological Journal of the Linnean Society 30, 245256.CrossRefGoogle Scholar
Janson, K. (1987 b). Genetic drift in small and recently founded populations on the marine snail Littorina saxatilis. Heredity 58, 3137.CrossRefGoogle Scholar
Janson, K. & Ward, R. D. (1984). Microgeographic variation in allozyme and shell characters in Littorina saxatilis Olivi (Prosobranchia: Littorinidae). Biological Journal of the Linnean Society 22, 289307.CrossRefGoogle Scholar
Janson, K. & Ward, R. D. (1985). The taxonomic status of Littorina tenebrosa Montagu as assessed by morphological and genetic analyses. Journal of Conchology 32, 915.Google Scholar
Johannesson, B. & Johannesson, K. (1989 a). Littorina neglecta Bean, a morphological form within the variable species Littorina saxatilis (Olivi)? Hydrobiologia (in the press).Google Scholar
Johannesson, K. (1989). The bare zone of Swedish rocky shores – why is it there? Oikos 54, 7786.CrossRefGoogle Scholar
Johannesson, K. & Johannesson, B. (1989 b). Genetic variation within Littorina saxatilis (Olivi) and Littorina neglecta Bean. Is neglecta a good species? Hydrobiologia (in the press).Google Scholar
Johannesson, K. & Warmoes, T. (1989). Rapid colonization of Belgian breakwaters by the direct developer. Littorina saxatilis (Olivi). Hydrobiologia (in the press).Google Scholar
Knight, A. J., Hughes, R. N. & Ward, R. D. (1987). A striking example of the founder effect in the mollusc Littorina saxatilis. Biological Journal of the Linnean Society 32, 417426.CrossRefGoogle Scholar
Koehn, R. K. & Immerman, F. W. (1981). Biochemical studies of aminopeptidase polymorphism in Mytilus edulis. I. Dependence of enzyme activity on season, tissue, and genotype. Biochemical Genetics 19, 11151142.CrossRefGoogle ScholarPubMed
Koehn, R. K. & Siebenaller, J. F. (1981). Biochemical studies of aminopeptidase polymorphism in Mytilus edulis. II. Dependence of reaction rate on physical fators and enzyme concentration. Biochemical Genetics 19, 11431162.CrossRefGoogle Scholar
Koehn, R. K., Zera, A. J. & Hall, J. G. (1983). Enzyme polymorphism and natural selection. In Evolution of Genes and Proteins (ed. Nei, M. and Koehn, R. K.), pp. 115136. Sunderland, Mass.: Sinauer Associates.Google Scholar
Mastro, E., Chow, V. & Hedgecock, D. (1982). Littorina scutulata and Littorina plena: sibling species status of two prosobranch gastropod species confirmed by electrophoresis. Veliger 24, 239246.Google Scholar
Nei, M. (1983). Genetic polymorphism and the role of mutation in evolution. In Evolution of Genes and Proteins (ed. Nei, M. and Koehn, R. K.), pp. 165190. Sunderland, Mass.: Sinauer Associates.Google Scholar
Raffaelli, D. (1982). Recent ecological research on some European species of Littorina. Journal of Molluscan Studies 48, 342354.CrossRefGoogle Scholar
Ward, R. D. & Janson, K. (1985). A genetic analysis of sympatric subpopulations of the sibling species Littorina saxatilis Olivi and Littorina arcana Hannaford Ellis. Journal of Molluscan Studies 51, 8694.CrossRefGoogle Scholar
Ward, R. D. & Warwick, T. (1980). Genetic differentiation in the molluscan species Littorina rudis and Littorina arcana (Prosobranchia: Littorinidae). Biological Journal of the Linnean Society 14, 417428.CrossRefGoogle Scholar
Ward, R. D., Warwick, T. & Knight, A. J. (1986). Genetic analysis of ten polymorphic enzyme loci in Littorina saxatilis (Prosobranchia: Mollusca). Heredity 57, 233241.CrossRefGoogle Scholar
Workman, P. L. & Niswander, J. D. (1970). Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. American Journal of Human Genetics 22, 2449.Google ScholarPubMed