Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:37:10.274Z Has data issue: false hasContentIssue false

A cya deletion mutant of Escherichia coli develops thermotolerance but does not exhibit a heat-shock response

Published online by Cambridge University Press:  14 April 2009

John M. Delaney
Affiliation:
Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An adenyl cyclase deletion mutant (cya) of E. coli failed to exhibit a heat-shock response even after 30 min at 42 °C. Under these conditions, heat-shock protein synthesis was induced by 10 min in the wild-type strain. These results suggest that synthesis of heat-shock proteins in E. coli requires the cya gene. This hypothesis is supported by the finding that a presumptive cyclic AMP receptor protein (CRP) binding site exists within the promotor region of the E. coli htp R gene. In spite of the absence of heat-shock protein synthesis, when treated at 50 °C, the cya mutant is relatively more heat resistant than wild type. Furthermore, when heat shocked at 42 °C prior to exposure at 50 °C, the cya mutant developed thermotolerance. These results suggest that heat-shock protein synthesis is not essential for development of thermotolerance in E. coli.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Adams, M. H. (1959). Bacteriophages. Interscience, New York.CrossRefGoogle Scholar
Bloom, M., Skelly, S., Van Bogelen, R., Neidhardt, F., Brot, N. & Weissbach, H. (1986). In vitro effect of Escherichia coli heat shock regulatory protein on expression of heat shock genes. Journal of Bacteriology 166, 380384.CrossRefGoogle ScholarPubMed
Botsford, J. L. (1981). Cyclic nucleotides in prokaryotes. Microbiological Reviews 45, 620645.CrossRefGoogle Scholar
Brickman, E., Soll, L. & Beckwith, J. (1973). Genetic characterization of mutations which affect catabolite-sensitive operons in Escherichia coli, including deletions of the gene for adenyl cyclase. Journal of Bacteriology 116, 582587.CrossRefGoogle ScholarPubMed
Cameron, S., Levin, L., Zoller, M. & Wigler, M. (1988). cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53, 555566.CrossRefGoogle ScholarPubMed
Crickmore, N. & Salmond, G. P. C. (1986). The Escherichia coli heat shock regulatory gene is immediately downstream of a cell division operon: the fam mutation is allelic with rpoH. Molecular and General Genetics 205, 535539.CrossRefGoogle ScholarPubMed
de Crombrugghe, B., Busby, S. & Buc, H. (1984). Cyclic AMP receptor protein: role in transcription activation. Science 224, 831838.CrossRefGoogle ScholarPubMed
Emmer, M., de Crombrugghe, B., Pastan, I. & Perlman, R. (1970). Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proceedings of the National Academy of Sciences, USA 66, 480487.CrossRefGoogle ScholarPubMed
Erickson, J. W., Vaughn, V., Walter, W. A., Neidhardt, F. C. & Gross, C. (1987). Regulation of the promotors and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes and Development 1, 419432.CrossRefGoogle Scholar
Grossman, A. D., Erickson, J. W. & Gross, C. A. (1984). The htpR gene product of E. coli is a sigma factor for heat-shock promotors. Cell 38, 383390.CrossRefGoogle Scholar
Kiely, B. & O'Gara, F. (1983). Cyclic 3′5′-adenosine monophosphate synthesis in Rhizobium: identification of a cloned sequence from Rhizobium meliloti coding for adenyl cyclase. Molecular and General Genetics 192, 230234.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Lindquist, S., (1986). The heat-shock response. Annual Review of Biochemistry 55, 11511191.CrossRefGoogle ScholarPubMed
Neidhardt, F. C. & Van Bogelen, R. A. (1981). Positive regulatory gene for temperature-controlled proteins in Escherichia coli. Biochemical and Biophysical Research Communications 100, 894900.CrossRefGoogle ScholarPubMed
Neidhardt, F. C., Van Bogelen, R. A. & Lau, E. T. (1983). Molecular cloning and expression of a gene that controls the high-temperature regulon of Escherichia coli. Journal of Bacteriology 153: 597603CrossRefGoogle ScholarPubMed
Neidhardt, F. C., Van Bogelen, R. A. & Vaughn, V. (1984). The genetics and regulation of heat-shock proteins. Annual Review of Genetics 18, 295329.CrossRefGoogle ScholarPubMed
Plesofsky-Vig, N. & Brambl, R. (1985). Heat shock response of Neurospora crassa: protein synthesis and induced thermotolerance. Journal of Bacteriology 162, 10831091.CrossRefGoogle ScholarPubMed
Shin, D.-Y., Matsumoto, K., Iida, H., Uno, I. & Ishikawa, T. (1987). Heat shock response of Saccharomyces cerevisiae altered in cyclic AMP-dependent protein phos-phorylation. Molecular and Cellular Biology 7, 244250.Google Scholar
Skelly, S., Coleman, T., Fu, C.-F., Brot, N. & Weissbach, H. (1987). Correlation between the 32 kDa σ factor and in vitro expression of Escherichia coli heat shock genes. Proceedings of the National Academy of Sciences USA 84, 83658369.CrossRefGoogle ScholarPubMed
Steinberg, C. M. & Edgar, R. S. (1962). A critical test of a current theory of genetic recombination in bacteriophage. Genetics 47, 187208.CrossRefGoogle ScholarPubMed
Straus, D. B., Walter, W. A. & Gross, C. A. (1987). The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329, 348351.CrossRefGoogle Scholar
Van Bogelen, R. A., Acton, M. A. & Neidhardt, F. C. (1987). Induction of the heat regulon does not produce thermotolerance in Escherichia coli. Genes and Development 1, 525531.CrossRefGoogle Scholar
Yamamori, T. & Yura, T. (1982). Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proceedings of the National Academy of Sciences USA 79, 860864.CrossRefGoogle ScholarPubMed