Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:02:59.010Z Has data issue: false hasContentIssue false

Crossing over between closely linked markers spanning the centromere of chromosome 3 in Drosophila melanogaster*

Published online by Cambridge University Press:  14 April 2009

Donald A. Sinclair
Affiliation:
Department of Zoology, The University of British Columbia, Vancouver, B.C., Canada
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recombination in a short genetic interval spanning the proximal region of chromosome 3 was studied in the regions st-in-ri-eg2-Ki-pp. Crossover frequencies in this region varied considerably in different genetic backgrounds; however, in all genotypes, the following observations were made: (1) an excess of multiple recombinant chromosomes indicative of high negative interference, was detected; (2) among the multiple recombi-nants, a positive correlation of simultaneous exchange in the most proximal and shortest adjacent genetic intervals was noted; (3) several classes of reciprocal products were not equally recovered. Three possible explanations for these results are: pre-meiotic exchange, chromatid interference and gene conversion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Arajärvi, P. & Hannah-Alava, A. (1969). Cytogenetic mapping of in and ri. Drosophila Information Service 44, 73.Google Scholar
Baker, W. K. (1958). Crossing over in heterochromatin. American Naturalist 92, 5960.CrossRefGoogle Scholar
Baldwin, M. & Chovnick, A. (1967). Autosomal half-tetrad analysis in Drosophila melanogaster. Genetics 55, 277293.CrossRefGoogle ScholarPubMed
Beadle, G. W. (1932). A possible influence of the spindle fiber on crossing over in Drosophila. Proceedings of the National Academy of Sciences, U.S.A. 18, 160165.CrossRefGoogle ScholarPubMed
Bole-Gowda, B. N., Perkins, B. N. & Strickland, W. M. (1962). Crossing over and interference in the centromere region of linkage group I of Neurospora. Genetics 47, 12431252.CrossRefGoogle Scholar
Bonnier, G. & Nordenskïold, M. (1937). Studies in Drosophila melanogaster. with attached-X's. I. Crossing over values. Frequencies of reciprocal and non-reciprocal exchanges. Chromatid interference. Hereditas 23, 257278.CrossRefGoogle Scholar
Calef, E. (1957). Effect on linkage maps of selection of crossovers between closely linked markers. Heredity 11, 265279.CrossRefGoogle Scholar
Chase, M. & Doermann, A. H. (1958). High negative interference over short segments of the genetic structure of bacteriophage T4. Genetics 43, 332352.CrossRefGoogle ScholarPubMed
Chovnick, A., Ballentyne, G. H. & Holm, D. G. (1971). Studies on gene conversion and its relationship to linked exchange in Drosophila melanogaster. Genetics 69, 179209.CrossRefGoogle ScholarPubMed
Davis, B. K. (1974). Chromatid interference in Drosophila melanogaster. Genetics 77, 16S.Google Scholar
De Serres, F. J. (1958). Recombination and interference in the ad-3 region of Neurospora crassa. Cold Spring Harbor Symposia on Quantitative Biology 23, 111118.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1930). Cytological map of the second chromosome of Drosophila melanogaster. Biologische Zentralblatt 50, 671685.Google Scholar
Gall, J. G., Cohen, E. H. & Polan, M. L. (1971). Repetitive DNA sequences in Drosophila. Chromosoma (Berlin) 33, 319344.CrossRefGoogle Scholar
Green, M. M. (1959). Double crossing over or gene conversion at the white locus in Drosophila melanogaster? Genetics 45, 1518.CrossRefGoogle Scholar
Green, M. M. (1960). Apparent double crossing over in a short genetic interval in Drosophila melanogaster. Nature, London 126, 990991.CrossRefGoogle Scholar
Graubard, M. A. (1934). Temperature effect on interference and crossing over. Genetics 19, 8394.CrossRefGoogle ScholarPubMed
Hawthorne, D. C. & Mortimer, R. K. (1960). Chromosome mapping in Saccharomyces: centromere linked genes. Genetics 45, 10851110.CrossRefGoogle ScholarPubMed
Hexter, W. M. (1958). On the nature of the garnet locus in Drosophila melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 44, 768771.CrossRefGoogle ScholarPubMed
Holm, D. G., Baldwin, M., Duck, P. & Chovnick, A. (1969). The use of compound autosomes to determine the relative centromeric position of chromosome 3. Drosophila Information Service 44, 112.Google Scholar
Howe, H. B. (1956). Crossing over and nuclear passing in Neurospora crassa. Genetics 41, 610622.CrossRefGoogle ScholarPubMed
Hurst, D. D., Fogel, S. & Mortimer, R. K. (1972). Conversion-associated recombination in yeast. Proceedings of the National Academy of Sciences, U.S.A. 69, 101105.CrossRefGoogle ScholarPubMed
Leupold, U. (1958). Studies on recombination in Schizosaccharomyces pombe. Cold Spring Harbor Symposia on Quantitative Biology 23, 161170.CrossRefGoogle ScholarPubMed
Lindegren, C. C. (1955). Non-Mendelian segregation in a single tetrad of Saccharomyces ascribed to gene conversion. Science 121, 605607.CrossRefGoogle Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Institution of Washington Publication No. 627.Google Scholar
Lucchesi, J. C. & Suzuki, D. T. (1968). The interchromosomal control of recombination. Annual Review of Genetics 2, 5386.CrossRefGoogle Scholar
Merriam, J. R. & Garcia-Bellido, A. (1969). Linkage Data, D. melanogaster. Drosophila Information Service 44, 51.Google Scholar
Mitchell, M. B. (1955 a). Aberrant recombination of pyridoxin mutants of Neurospora. Proceedings of the National Academy of Sciences, U.S.A. 41, 215220.CrossRefGoogle ScholarPubMed
Mitchell, M. B. (1955 b). Further evidence of aberrant recombination in Neurospora. Proceedings of the National Academy of Sciences, U.S.A. 41, 935937.CrossRefGoogle ScholarPubMed
Morgan, T. H., Sturtevant, A. H. & Bridges, C. B. (1925). The genetics of Drosophila. Bibliographia Genetica 2, 1262.Google Scholar
Muller, H. J. (1926). The regionally differential effect of X-rays on crossing over in autosomes of Drosophila. Genetics 10, 470507.CrossRefGoogle Scholar
Painter, T. S. (1935). The morphology of the third chromosome in the salivary gland of Drosophila melanogaster and a new cytological map of this element. Genetics 20, 301326.CrossRefGoogle Scholar
Peacock, W. J., Brutlag, D., Goldbing, E., Appels, R., Hinton, C. S. & Lindsley, D. L. (1973). The organization of highly repetitive DNA sequences in Drosophila melanogaster chromosomes. Cold Spring Harbor Symposia on Quantitative Biology 28, 405416.Google Scholar
Plough, H. H. (1917). The effect of temperature on crossing over in Drosophila. Journal of Experimental Zoology 24, 147209.CrossRefGoogle Scholar
Pritchard, R. H. (1960). Localized negative interference and its bearing on models of gene recombination. Genetical Research 1, 124.CrossRefGoogle Scholar
Roberts, P. A. (1965). Difference in the behavior of eu- and heterochromatin: crossing over. Nature, London 205, 725726.CrossRefGoogle ScholarPubMed
Ritossa, F. M., Atwood, K. C. & Spiegelman, S. (1966). A molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of ‘ribosomal’ DNA. Genetics 54, 819834.CrossRefGoogle ScholarPubMed
Salamini, F. & Lorenzoni, C. (1970). Genetical analysis of glossy mutants of maize. III. Intracistronic recombination and high negative interference at the gl 1 locus. Molecular and General Genetics 108. 225232.CrossRefGoogle Scholar
Schultz, J. & Redfield, H. (1951). Interchromosomal effect on crossing over in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology 16, 175197.CrossRefGoogle ScholarPubMed
Smith, P. D., Finnerty, V. G. & Chovnick, A. (1970). Gene conversion in Drosophila: non-reciprocal events at the maroon-like cistron. Nature, London 228, 442444.CrossRefGoogle ScholarPubMed
Søgaard, B. (1974). The localization of eciferum loci in barley. III. Three point test of genes on chromosome I in barley. Hereditas 76, 4147.CrossRefGoogle Scholar
Stadler, D. R. (1956). Double crossing over in Neurospora. Genetics 41, 623630.CrossRefGoogle ScholarPubMed
Stevens, W. L. (1936). The analysis of interference. Journal of Genetics 32, 5164.CrossRefGoogle Scholar
Strickland, W. N. (1961). Tetrad analysis of short chromosome regions of Neurospora crassa. Genetics 46, 11251141.CrossRefGoogle ScholarPubMed
Sturtevant, A. H. (1951). A map of the fourth chromosome in Drosophila melanogaster based on crossing over in triploid females. Proceedings of the National Academy of Sciences, U.S.A. 37, 405407.CrossRefGoogle ScholarPubMed
Suzuki, D. T., Baillie, D. & Parry, D. (1966). The origin of multiple crossover chromatids in short genetic intervals in Drosophila melanogaster. Genetics 54, 13591370.CrossRefGoogle ScholarPubMed
Suzuki, D. T. & Parry, D. M. (1964). Crossing over near the centromere of chromosome 3 in Drosophila melanogaster females. Genetics 50, 14271432.CrossRefGoogle ScholarPubMed
Thompson, P. E. (1963 a). Centric pairing and crossing over in Drosophila melanogaster. Genetics 48, 697701.CrossRefGoogle ScholarPubMed
Thompson, P. E. (1963 b). Evidence on the basis of the centromere effect in the large autosomes of Drosophila melanogaster. Genetics 49, 761769.CrossRefGoogle Scholar
Weinstein, A. (1936). The theory of multiple-strand crossing over. Genetics 21, 155199.CrossRefGoogle ScholarPubMed
Welshons, W. J. (1955). A comparative study of crossing over in attached-X chromosomes of Drosophila melanogaster. Genetics 40, 918936.CrossRefGoogle ScholarPubMed
Whittinghill, M. (1955). Crossover variability and induced crossing over. Journal of Cellular and Comparative Physiology 45, 189220.CrossRefGoogle ScholarPubMed