Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T10:45:53.757Z Has data issue: false hasContentIssue false

Correlation of compound autosome segregation and sex-chromosome disjunction in female Lucilia cuprina (Wied.) (Diptera: Calliphoridae)

Published online by Cambridge University Press:  14 April 2009

G. G. Foster
Affiliation:
CSIRO Division of Entomology, G.P.O. Box 1700, Canberra, A.C.T. 2601, Australia
R. H. Maddern
Affiliation:
CSIRO Division of Entomology, G.P.O. Box 1700, Canberra, A.C.T. 2601, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Lucilia cuprina (Wiedemann) females, non-segregation of compound fifth-chromosomes is correlated with non-disjunction of the X chromosomes. Approximately two-thirds of eggs which inherit both maternal compound elements are nullo-X, suggesting that meiotic pairing between X chromosomes and compound autosomes has occurred. There was no evidence for pairing of the compounds and the X or Y chromosome in males. A limited amount of data suggests that high non-segregation frequencies may occur in the offspring of putative X/X/X and X/O females. These results suggest the existence of non-homologous (distributive) pairing in L. cuprina females.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Bedo, D. G. (1980). C, Q and H-banding in the analysis of Y chromosome rearrangements in Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Chromosoma 77, 299308.CrossRefGoogle Scholar
Bedo, D. G. (1982). Differential sex chromosome replication and dosage compensation in polytene trichogen cells of Lucilia cuprina (Diptera: Calliphoridae). Chromosoma 87, 2132.CrossRefGoogle ScholarPubMed
Bedo, D. G. & Foster, G. G. (1985). Cytogenetic mapping of the male-determining region of Lucilia cuprina (Diptera: Calliphoridae). Chromosoma 92, 344350.CrossRefGoogle Scholar
Foster, G. G. (1982). The use of bridging systems to increase genetic variability in compound chromosomes strains for genetic control of Lucilia cuprina (Wiedemann). Theoretical and Applied Genetics 63, 295305.CrossRefGoogle ScholarPubMed
Foster, G. G. & Maddern, R. H. (1985). Segregation and pairing of compound fifth-chromosomes in Lucilia cuprina males. Genetical Research 46, 149168.CrossRefGoogle Scholar
Foster, G. G., Maddern, R. H. & Mills, A. T. (1980 a). Genetic instability in mass-rearing colonies of a sex-linked translocation strain of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) during a field trial of genetic control. Theoretical and Applied Genetics 58, 169175.CrossRefGoogle ScholarPubMed
Foster, G. G., Maddern, R. H., Helman, R. A. & Reed, E. M. (1985). Field trial of a compound chromosome strain for genetic control of the sheep blowfly Lucilia cuprina. Theoretical Applied Genetics 70, 1321.CrossRefGoogle ScholarPubMed
Foster, G. G., Whitten, M. J. & Konowalow, C. (1976). The synthesis of compound autosomes in the Australian sheep blowfly Lucilia cuprina. Canadian Journal of Genetics and Cytology 18, 169177.CrossRefGoogle ScholarPubMed
Foster, G. G., Whitten, M. J., Konovalov, C., Bedo, D. G., Maddern, R. H. & Boon, D. J. (1980 b) Cytogenetic studies of Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae). Polytene chromosome maps of the autosomes and cytogenetic localization of visible genetic markers. Chromosoma 81, 151168.CrossRefGoogle Scholar
Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J. T. A. & Maffi, G. (1981). Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R. -D. (Diptera: Calliphoridae), and possible correlations with the linkage groups of Musca domestica L. and Drosophila melanogaster (Mg.). Genetical Research 37, 5569.CrossRefGoogle Scholar
Grell, E. H. (1970). Distributive pairing: mechanism for segregation of compound autosomal chromosomes in oocytes of Drosophila melanogaster. Genetics 65, 6574.CrossRefGoogle ScholarPubMed
Grell, R. F. (1976). Distributive pairing. In The Genetics and Biology of Drosophila, vol. 1a (ed. Ashburner, M. and Novitski, E.), pp. 435486. London: Academic Press.Google Scholar
Harger, H., & Holm, D. G. (1980). Meiotic behaviour of compound autosomes in females of Drosophila melanogaster: interchromosomal effects and the source of spontaneous non segregation. Genetics 96, 455470.CrossRefGoogle Scholar
Holm, D. G. & Chovnick, A. (1975). Compound autosomes in Drosophila melanogaster: the meiotic behaviour of compound thirds. Genetics 81, 293311.CrossRefGoogle ScholarPubMed
Holm, D. G., Deland, M. & Chovnick, A. (1967). Meiotic segregation of C(3L) and C(3R) chromosomes in Drosophila melanogaster. Genetics 56, 565566 (abstr.).Google Scholar
Konovalov, C. A., Foster, G. G. & Whitten, M. J. (1983). Viability and fertility of sex-linked autosomal duplications in Lucilia cuprina (Wiedemann). Theoretical and Applied Genetics 65, 916.CrossRefGoogle ScholarPubMed
Maddern, R. H. (1981). Radiation induced sex-chromosome loss as an indicator of the optimal stage during spermatogenesis for the induction of compound chromosomes in Lucilia cuprina. Canadian Journal of Genetics and Cytology 23, 101109.CrossRefGoogle Scholar
Maddern, R. H. & Bedo, D. G. (1984). Properties of the sex chromosomes of Lucilia cuprina deduced from radiation studies. Genetica 63, 203212.CrossRefGoogle Scholar
Ullerich, F. H. (1963). Geschlechtschromosomen und Geschlechtsbestimmung bei einigen Calliphorinen (Calliphoridae, Diptera). Chromosoma 14, 45110.CrossRefGoogle Scholar
Whitten, M. J., Foster, G. G., Arnold, J. T. & Konowalow, C. (1975). The Australian sheep blowfly, Lucilia cuprina. In Handbook of Genetics, vol. 3 (ed. King, R. C.), pp. 401418. New York: Plenum.Google Scholar