Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T14:01:00.233Z Has data issue: false hasContentIssue false

Conserved loci on the X chromosome confer phosphate homeostasis in mice and humans

Published online by Cambridge University Press:  14 April 2009

Charles R. Scriver*
Affiliation:
DeBelle Laboratory for Biochemical Genetics, McGill University-Montreal Children's Hospital Research Institute, Departments of Biology and Pediatrics and Centre for Human Genetics, McGill University
Harriet S. Tenenhouse
Affiliation:
DeBelle Laboratory for Biochemical Genetics, McGill University-Montreal Children's Hospital Research Institute, Departments of Biology and Pediatrics and Centre for Human Genetics, McGill University
*
* Corresponding author. Montreal Children's Hospital, 2300 Tupper Street, Montreal (QUE), CanadaH3H TP3
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several genes expressed in kidney and other tissues determine phosphate homeostasis in extracellular fluid. The major form of inherited hypophosphatemia in humans involves an X-linked locus (HPDR, Xp22.31-p21.3). It has two murine homologues (Hyp and Gy) which map to closely-linked but separate loci (crossover value 0·4%–0·8%). Both murine mutations impair Na+-phosphate cotransport in renal brush border membrane; an associated renal disorder of 1, 25-dihydroxyvitamin D3 (1, 25(OH)2D) metabolism has been characterized in Hyp mice. Whereas experiments with cultured Hyp renal epithelium indicate that the gene is expressed in kidney, studies showing the development of the mutant renal phenotype in normal mice parabiosed to Hyp mice implicate a circulating factor; these findings can be reconciled if the humoral factor is of renal origin. The gene dose effect of HPDR, Hyp and Gy on serum phosphorus values is consistently deviant and heterozygotes resemble affected hemizygotes. The deviant effect is also seen on renal phosphate transport; all mutant females (Hyp/Hyp and Hyp/+) have similar phenotypes. On the other hand, there is a normal gene dose effect of HPDR in mineralized tissue; tooth PRATIO (pulp area/tooth area) values for heterozygotes are distributed between those for affected males and normals. The tooth data imply that the X chromosome locus is expressed in both renal and non-renal cells. The polypeptide product of the X chromosome gene(s) is still unknown.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Albright, F., Butler, A. M. & Bloomberg, E. (1937). Rickets resistant to vitamin D therapy. American Journal of Diseases of Children 54, 529547.Google Scholar
Arnaud, C., Glorieux, F. & Scriver, C. (1971). Serum parathyroid hormone in X-linked hypophosphatemia. Science 173, 845847.CrossRefGoogle ScholarPubMed
Arthus, M. F., Bergeron, M. & Scriver, C. R. (1982). Topology of membrane exposure in the renal cortex slice. Studies of glutathione and maltose cleavage. Biochimica Biophysica Acta 692, 371376.CrossRefGoogle ScholarPubMed
Baker, L. R. I. & Stamp, T. C. B. (1989). Autosomal recessive hypophosphataemia. Archives of Disease in Childhood 64, 1209.CrossRefGoogle ScholarPubMed
Baxter, L. A. & DeLuca, H. F. (1976). Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. Journal of Biological Chemistry 251, 31583161.Google Scholar
Bell, C. L., Tenenhouse, H. S. & Scriver, C. R. (1988 a). Initiation and characterization of primary mouse kidney epithelial cultures. In Vitro Cellular and Developmental Biology 24, 683695.Google Scholar
Bell, C. L., Tenenhouse, H. S. & Scriver, C. R. (1988 b). Primary cultures of renal epithelial cells from X-linked hypophosphatemic (Hyp) mice express defects in phosphate transport and vitamin D metabolism. American Journal of Human Genetics 43, 293303.Google ScholarPubMed
Boneh, A., Mandla, S. & Tenenhouse, H. S. (1989). Phorbol myristate acetate activates protein kinase C, stimulates the phosphorylation of endogenous proteins and inhibits phosphate transport in mouse renal tubules. Biochimica et Biophysica Acta 1012, 308316.Google Scholar
Boneh, A., Reade, T. M., Scriver, C. R. & Rishikof, E. (1987). Audiometric evidence for two forms of X-linked hypophosphatemia in humans, apparent counterparts of Hyp and Gy mutations in mouse. American Journal of Medical Genetics 27, 9971003.CrossRefGoogle Scholar
Boneh, A. & Tenenhouse, H. S. (1990). Protein kinase C in mouse kidney: Effect of Hyp mutation and phosphate deprivation. Kidney international 37, 682688.CrossRefGoogle ScholarPubMed
Broadhead, D. M., Kirk, J. M., Burt, A. J., Gupta, V., Ellis, P. M. & Besley, G. T. N. (1986). Full expression of Hunter's disease in a female with an X-chromosome deletion leading to non-random inactivation. Clinical Genetics 30, 392398.CrossRefGoogle Scholar
Brunette, M. G., Allard, S. & Beliveau, R. (1984). Renal brush border membranes from mice with X-linked hypophosphatemia: Protein composition, phosphate binding capacity, and protein kinase activity. Canadian Journal of Physiology and Pharmacology 62, 13941400.CrossRefGoogle ScholarPubMed
Brunette, M. G., Chan, M. & LeBrun, M. (1981). Phosphatase activity along the nephron of mice with hypophosphatemic vitamin-D-resistant rickets. Kidney International 20, 181187.Google Scholar
Buckle, V. J., Edwards, J. H., Evans, E. P., Jonasson, J. A., Lyon, M. F., Peters, J., Searle, A. G. & Wedd, N. S. (1984). Chromosome maps of man and mouse II. Clinical Genetics 26, 111.CrossRefGoogle ScholarPubMed
Burnett, C. H., Dent, C. E., Harper, C. & Warland, B. J. (1964). Vitamin D-resistant rickets. American Journal of Medicine 36, 222232.CrossRefGoogle ScholarPubMed
Christensen, J. F. (1940/1941). Three familial cases of atypical rickets. Acta Paediatrica Scandinava 28, 247.CrossRefGoogle Scholar
Coleclough, C., Perry, R. P., Karjalainen, K. & Weigert, M. (1981). Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobin gene expression. Nature 290, 372378.Google Scholar
Costa, T., Marie, P. J., Scriver, C. R., Cole, D. E. C., Reade, T. M., Nogrady, B., Glorieux, F. H. & Delvin, E. E. (1981). X-linked hypophosphatemia: Effect of calcitriol on renal handling of phosphate, serum phosphate, and bone mineralization. Journal of Clinical Endocrinology and Metabolism 52, 463472.CrossRefGoogle ScholarPubMed
Cowgill, L. D., Goldfarb, S., Lau, K., Slatopolsky, E. & Agus, Z. S. (1979). Evidence for an intrinsic renal tubular defect in mice with genetic hypophosphatemic rickets. Journal of Clinical Investigation 63, 12031210.CrossRefGoogle ScholarPubMed
Dennis, V. W., Bello-Reuss, E. & Robinson, R. R. (1977). Response of phosphate transport to parathyroid hormone in segments of rabbit nephron. American Journal of Physiology 233, F29–F38.Google ScholarPubMed
Dent, C. E. (1952). Rickets and osteomalacia from renal tubule defects. Journal of Bone and Joint Surgery 34B, 266274.Google Scholar
Drezner, M. K., Lyles, K. W., Haussler, M. R. & Harrelson, J. M. (1980). Evaluation of a role for 1,25-dihydroxy-vitamin D3 in the pathogenesis and treatment of X-linked hypophosphatemic rickets and osteomalacia. Journal of Clinical Investigation 66, 10201032.Google Scholar
Ecarot-Charrier, B., Glorieux, F. H., Travers, R., Desbarats, M., Bouchard, F. & Hinek, A. (1988). Defective bone formation by transplanted Hyp mouse bone cells into normal mice. Endocrinology 123, 768773.Google Scholar
Eicher, E. M., Southard, J. L., Scriver, C. R. & Glorieux, F. H. (1976). Hypophosphatemia: Mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proceedings of the National Academy of Sciences U.S.A. 73, 46674671.CrossRefGoogle ScholarPubMed
Frame, B., Arnstein, R., Frost, H. M. & Smith, R. W. Jr. (1965). Resistant osteomalacia. Studies with tetracycline bone labeling and metabolic balance. American Journal of Medicine 38, 134144.CrossRefGoogle ScholarPubMed
Fraser, D. & Scriver, C. R. (1976). Familial forms of vitamin D-resistant rickets revisited. X-linked hypophosphatemia and autosomal recessive vitamin D dependency. American Journal of Clinical Nutrition 29, 13151329.CrossRefGoogle ScholarPubMed
Frost, H. M. (1958). Some observations on bone mineral in a case of vitamin D resistant rickets. Henry Ford Hospital Medical Bulletin 6, 300310.Google Scholar
Giasson, S. D., Brunette, M. G., Danan, G., Vigneault, N. & Carriere, S. (1977). Micropuncture study of renal phosphorus transport in hypophosphatemic vitamin D-resistant rickets mice. Pflugers Archives 371, 3338.Google Scholar
Glorieux, F. H. & Ecarot-Charrier, B. (1987). X-linked vitamin-D resistant rickets: Is osteoblast activity defective? In Calcium Regulation and Bone Metabolism: Basic and Clinical Aspects, (ed. Cohn, D. V., Martin, T. J. and Meunier, P. J.). 9, 227231. Elsevier Science Publishers.Google Scholar
Glorieux, F. H., Marie, P. J., Pettifor, J. M. & Delvin, E. E. (1980). Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. New England Journal of Medicine 303, 10231031.CrossRefGoogle ScholarPubMed
Glorieux, F. H., Morin, C. L., Travers, R., Delvin, E. E. & Poirier, R. (1976). Intestinal phosphate transport in familial hypophosphatemic rickets. Pediatric Research 10, 691696.CrossRefGoogle ScholarPubMed
Glorieux, F. & Scriver, C. R. (1972). Loss of a parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphatemia. Science 175, 9971000.Google Scholar
Glorieux, F. H., Scriver, C. R., Reade, T. M., Goldman, H. & Roseborough, A. (1972). Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. New England Journal of Medicine 287, 481487.CrossRefGoogle ScholarPubMed
Gmaj, P. & Murer, H. (1986). Cellular mechanisms of inorganic phosphate transport in kidney. Physiology Reviews 66, 3670.CrossRefGoogle ScholarPubMed
Gray, R. W., Wilz, D. R., Caldas, A. E. & Lemann, J. (1977). The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism 45, 299306.Google Scholar
Haase, W., Schafer, A., Murer, H. & Kinne, R. (1978). Studies on the orientation of brush-border membrane vesicles. Biochemical Journal 172, 4762.Google Scholar
Hammerman, M. R. & Chase, L. R. (1983). Pi transport, phosphorylation, and dephosphorylation in renal membranes from Hyp/Y mice. American Journal of Physiology 245, F701–F706.Google Scholar
Hammerman, M. R. & Hruska, K. A. (1982). Cyclic AMP-dependent protein phosphorylation in canine renal brush border membrane vesicles is associated with decreased phosphate transport. Journal of Biological Chemistry 257, 992999.CrossRefGoogle ScholarPubMed
Herskowitz, I. (1987). Functional inactivation of genes by dominant negative mutations. Nature 329, 219222.Google Scholar
Holick, M. F., MacLaughlin, J. A., Clark, M. B., Holick, S. A., Potts, J. T. Jr., Anderson, R. R., Blank, I. H., Parrish, J. A. & Elias, P. (1980). Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 210, 203205.CrossRefGoogle ScholarPubMed
Huldschinky, K. (1919). Heilung von Rachitis durch Kunstliche Hohensonne. Dtsch Med Wochenschr 45, 712713.CrossRefGoogle Scholar
Kacser, H. & Burns, J. A. (1981). The molecular basis of dominance. Genetics 97, 639666.CrossRefGoogle ScholarPubMed
Kacser, H. & Porteous, J. W. (1987). Control of metabolism: What do we have to measure? Trends in Biochemical Sciences 12, 513.CrossRefGoogle Scholar
Kapur, S., Higgins, J. V., Delp, K. & Rogers, B. (1987). Menkes syndrome in a girl with X-autosome translocation. American Journal of Medical Genetics 26, 503510.CrossRefGoogle Scholar
Kay, M. A., Meyer, M. H., Delzer, P. R. & Meyer, R. A. Jr. (1985). Changing patterns of femoral and skeletal mineralization during growth in juvenile X-linked hypophosphatemic mice. Mineral and Electrolyte Metabolism 11, 374380.Google ScholarPubMed
Kiebzak, G. M. & Dousa, T. P. (1985). Thyroid hormones increase renal brush border membrane transport of phosphate in X-linked hypophosphatemic (Hyp) mice. Endocrinology 117, 613619.CrossRefGoogle ScholarPubMed
Kiebzak, G. M., Meyer, R. A. Jr. & Mish, P. M. (1981). X-linked hypophosphatemic mice respond to thyropara-thyroidectomy. Mineral and Electrolyte Metabolism 6, 153164.Google Scholar
Krebs, E. G. (1985). The phosphorylation of proteins: A major mechanism for biological regulation. Biochemical Society Transactions 13, 813820.Google Scholar
Lobaugh, B. & Drezner, M. K. (1983). Abnormal regulation of renal 25-hydroxyvitamin D-1α-hydroxylase activity in the X-linked hypophosphatemic mouse. Journal of Clinical Investigation 71, 400403.Google Scholar
Loomis, W. F. (1967). Skin-pigment regulation of vitamin D biosynthesis in man. Science 157, 501506.Google Scholar
Lyon, M. F. (1988). The William Allan Memorial Award Address: X-chromosome inactivation and the location and expression of X-linked genes. American Journal of Human Genetics 42, 816.Google Scholar
Lyon, M. F., Scriver, C. R., Baker, L. R. I., Tenenhouse, H. S., Kronick, J. & Mandla, S. (1986). The Gy mutation: Another cause of X-linked hypophosphatemia in mouse. Proceedings of the National Academy of Sciences U.S.A. 83, 48994903.Google Scholar
Machler, M., Frey, D., Gal, A., Orth, U., Wienker, T. F., Panconi, A. & Schmid, W. (1986). X-linked dominant hypophosphatemia is closely linked to DNA markers DXS41 and DXS43 at Xp22. Human Genetics 73, 271275.Google Scholar
Makin, G., Lohnes, D., Byford, V., Ray, R. & Jones, G. (1989). Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochemical Journal 262, 173180.Google Scholar
Marie, P. J. & Glorieux, F. H. (1983). Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. Calcified Tissue International 35, 443448.Google Scholar
McCollum, E. V., Simmonds, N., Becker, J. E. & Shipley, P. G. (1922). Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. Journal of Biological Chemistry 53, 293312.Google Scholar
McNair, S. L. & Stickler, G. B. (1969). Growth in familial hypophosphatemic vitamin-D-resistant rickets. New England Journal of Medicine 281, 511516.Google Scholar
Mellanby, E. (1919). An experimental investigation on rickets. Lancet 1, 407412.Google Scholar
Meyer, R. A. Jr., Gray, R. W. & Meyer, M. H. (1980). Abnormal vitamin D metabolism in the X-linked hypophosphatemic mouse. Endocrinology 107, 15771581.CrossRefGoogle ScholarPubMed
Meyer, R. A. Jr., Meyer, M. H., & Gray, R. W. (1989 a). Parabiosis suggests a humoral factor is involved in X-linked hypophosphatemia in mice. Journal of Bone and Mineral Research 4, 493500.CrossRefGoogle ScholarPubMed
Meyer, R. A. Jr., Tenenhouse, H. S., Meyer, M. H. & Klugerman, A. H. (1989 b). The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy. Journal of Bone and Mineral Research 4, 523532.Google Scholar
Migeon, B. R., Moser, H. W., Moser, A. B., Axelman, J., Sillence, D. & Norum, R. A. (1981). Adrenoleukodys-trophy: Evidence for X-linkage, inactivation and selection favoring the mutant allele in heterozygous cells. Proceedings of the National Academy of Sciences U.S.A. 78, 50665070.Google Scholar
Monk, M. (1987). Memories of mother and father. Nature 328, 203204.Google Scholar
Neer, R. M. (1989). Calcium and inorganic-phosphate homeostasis. In Endocrinology (ed. DeGroot, L. J., Besser, G. M., Cahill, G. R. Jr., Marshall, J. C., Nelson, D. M., Odell, W. D., Potts, J. T. Jr., Rubenstein, A. H. and Steinberger, E., pp. 927953. Grune & Stratton, New York.Google Scholar
Nesbitt, T., Drezner, M. K. & Logaugh, B. (1986). Abnormal parathyroid hormone stimulation of 25-hydroxyvitamin D-1α-hydroxylase activity in the hypophosphatemic mouse. Journal of Clinical Investigation 77, 181187.Google Scholar
Nisen, P. D. & Waber, P. G. (1989). Nonrandom X chromosome DNA methylation patterns in hemophiliac females. Journal of Clinical Investigation 83, 14001403.CrossRefGoogle ScholarPubMed
Ohno, S. (1967). Sex chromosomes and sex-linked genes. In Monographs on Endocrinology, 1, (ed. Labhart, A., Mann, T., Samuels, L. T. and Zander, J.), pp. 4673. Springer Verlag.Google Scholar
Ohno, S. (1973). Ancient linkage groups and frozen accidents. Nature 244, 259262.CrossRefGoogle Scholar
Rasmussen, H. & Tenenhouse, H. S. (1989). Hypophosphatemias. In The Metabolic Basis of Inherited Disease, (ed. Scriver, C. R., Beaudet, A. L., Sly, W. S. and Valle, D.), pp. 25812601, 6th ed.McGraw-Hill Co., New York.Google Scholar
Read, A. P., Thakker, R. V., Davies, K. E., Mountford, R. C., Brenton, D. P., Davies, M., Glorieux, F., Harris, R., Hendy, G. N., King, A., McGlade, S., Peacock, C. J., Smith, R. & O'Riordan, J. H. (1986). Mapping of human X-linked hypophosphataemic rickets by multilocus linkage analysis. Human Genetics 73, 267270.Google Scholar
Robertson, B. R., Harris, R. C. & McCune, D. J. (1942). Refractory rickets: Mechanism of therapeutic action of calciferol. American Journal of Diseases of Children 64, 948949.Google Scholar
Sapienza, C., Peterson, A. C., Rossant, J. & Balling, R. (1987). Degree of methylation of transgenes is dependent on gamete of origin. Nature 328, 251254.Google Scholar
Schwartz, S., Scriver, C. R., Reade, T. M. & Shields, E. D. (1988). Oral findings in patients with autosomal dominant hypophosphatemic bone disease and X-linked hypophosphatemia: Further evidence that they are different diseases. Oral Surgery, Oral Medicine, Oral Pathology 66, 310314.CrossRefGoogle ScholarPubMed
Scriver, C. R. (1974). Rickets and the pathogenesis of impaired tubular transport of phosphate and other solutes. American Journal of Medicine 57, 4349.CrossRefGoogle ScholarPubMed
Scriver, C. R. (1989). The salience of Garrod's ‘Molecular groupings’ and ‘Inborn Factors in Disease’. Journal of Inherited Metabolic Disease 12 (Suppl. 1), 924.CrossRefGoogle ScholarPubMed
Scriver, C. R., Fraser, D. & Kooh, S. W. (1982). Hereditary rickets. In Calcium Disorders: Clinical Endocrinology 2. (ed. Heath, D. and Marx, S. J.), pp. 146. Butterworth Scientific, London.Google Scholar
Scriver, C. R., MacDonald, W., Reade, T., Glorieux, F. H. & Nogrady, B. (1977). Hypophosphatemic nonrachitic bone disease: An entity distinct from X-linked hypophos-phatemia in the renal defect, bone involvement and inheritance. American Journal of Medical Genetics 1, 101117.Google Scholar
Scriver, C. R., Reade, T. M., DeLuca, H. F. & Hamstra, A. J. (1978). Serum 1,25-dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. New England Journal of Medicine 299, 976979.Google Scholar
Scriver, C. R., Reade, T., Halal, F., Costa, T. & Cole, D. E. C. (1981). Autosomal hypophosphataemic bone disease responds to 1,25-(OH)2D3. Archives of Disease in Childhood 56, 203207.Google Scholar
Scriver, C. R. & Tenenhouse, H. S. (1981). On the heritability of rickets, a common disease (Mendel, Mammals and Phosphate). The Johns Hopkins Medical Journal 149, 179187.Google ScholarPubMed
Scriver, C. R. & Tenenhouse, H. S. (1990). Mendelian phenotypes as probes of renal transport systems for amino acids and phosphate. In Handbook on Renal Physiology. 2nd ed.American Physiological Society. Bethesda. (in the press.)Google Scholar
Searle, A. G., Peters, J., Lyon, M. F., Hall, J. G., Evans, E. P., Edwards, J. H. & Buckle, V. J. (1989). Chromosome maps of man and mouse. IV. Annals of Human Genetics 53, 89140.CrossRefGoogle ScholarPubMed
Shields, E. D., Scriver, C. R., Reade, T., Fujiwara, T. M., Morgan, K., Ciampi, A. & Schwartz, S. (1990). X-linked hypophosphatemia. The mutant gene is expressed in teeth as well as in kidney. American Journal of Human Genetics 46, 434442.Google Scholar
Smith, R. & O'Riordan, J. L. H. (1987). Of mouse and man: The hypophosphataemic genes. Quarterly Journal of Medicine 64, 705707.Google Scholar
Steendijk, R., Van Den Hooff, A., Neilsen, H. K. L. & Jowsey, J. (1965). Lesion of the bone matrix in vitamin D resistant rickets. Nature 207, 426427.Google Scholar
Still, G. F. (1907). Rickets. In Modern Medicine. Its Theory and Practice (ed. Osier, W. and McCrae, T.). pp. 864892. Lea Bros and Company. Philadelphia.Google Scholar
Tanaka, Y. & DeLuca, H. F. (1973). The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Archives of Biochemistry and Biophysics 154, 566574.CrossRefGoogle Scholar
Tenenhouse, H. S. (1983). Abnormal renal mitochondrial 25-hydroxyvitamin D3-l-hydroxylase activity in the vitamin D and calcium deficient X-linked Hyp mouse. Endocrinology 113, 816818.Google Scholar
Tenenhouse, H. S. (1984 a). Metabolism of 25-hydroxyvitamin D3 in renal slices from the X-linked hypophosphatemic (Hyp) mouse: Abnormal response to fall in serum calcium. Cell Calcium 5, 4345.CrossRefGoogle ScholarPubMed
Tenenhouse, H. S. (1984 b). Investigation of the mechanism for abnormal renal 25-hydroxyvitamin D3-l-hydroxylase activity in the X-linked Hyp mouse. Endocrinology 115, 634639.Google Scholar
Tenenhouse, H. S., Fast, D. K., Scriver, C. R. & Koltay, M. (1981). Intestinal transport of phosphate anion is not impaired in the Hyp (Hypophosphatemic) mouse. Biochemical Biophysical Research Communication 110, 537543.Google Scholar
Tenenhouse, H. S. & Henry, H. L. (1985). Protein kinase activity and protein kinase inhibitor in mouse kidney: Effect of the X-linked Hyp mutation and vitamin D status. Endocrinology 117, 17191726.Google Scholar
Tenenhouse, H. S., Klugerman, A. H. & Neal, J. L. (1989). Effect of phosphonoformic acid, dietary phosphate and the Hyp mutation on kinetically distinct phosphate transport processes in mouse kidney. Biochimica Biophysica Acta 984, 207213.Google Scholar
Tenenhouse, H. S. & Jones, G. (1990). Abnormal regulation of renal vitamin D catabolism by dietary phosphate in murine X-linked hypophosphatemic rickets. Journal of Clinical Investigation 85, 14501455.Google Scholar
Tenenhouse, H. S. & Scriver, C. R. (1978). The defect in transcellular transport of phosphate in the nephron is located in brush border membranes in X-linked hypophosphatemia (Hyp mouse model). Canadian Journal of Biochemistry 56, 640646.CrossRefGoogle ScholarPubMed
Tenenhouse, H. S. & Scriver, C. R. (1979). Renal brush border membrane adaptation to phosphorus deprivation in the Hyp/Y mouse. Nature 281, 225227.Google Scholar
Tenenhouse, H. S. & Scriver, C. R. (1981). Effect of 1,25-dihydroxyvitamin D3 on phosphate homeostasis in the X-linked hypophosphatemic (Hyp) mouse. Endocrinology 109, 658660.Google Scholar
Tenenhouse, H. S., Scriver, C. R., Mclnnes, R. R. & Glorieux, F. H. (1978). Renal handling of phosphate in vivo and in vitro by the X-linked hypophosphatemic male mouse: Evidence for a defect in the brush border membrane. Kidney international 14, 236244.CrossRefGoogle ScholarPubMed
Tenenhouse, H. S., Yip, A. & Jones, G. (1988). Increased renal catabolism of 1,25-dihydroxyvitamin D3 in murine X-linked hypophosphatemic rickets. Journal of Clinica Investigation 81, 461465.CrossRefGoogle ScholarPubMed
Thakker, R. V., Read, A., Davies, K. E., Whyte, M. P., Weksberg, R., Glorieux, F., Davies, M., Mountford, R. C., Harris, R., King, A., Kim, G. S., Fraser, D., Kooh, S. W. & O'Riordan, J. L. H. (1987). Bridging markers defining the map position of X-linked hypophosphataemic rickets. Journal of Medical Genetics 24, 756760.Google Scholar
Tieder, M., Modai, D., Samuel, R., Arie, R., Halabe, A., Bab, I., Gabizon, D., & Liberman, U. A. (1985). Hereditary hypophosphatemic rickets with hypercalciuria. The New England Journal of Medicine 312, 611617.Google Scholar
Tieder, M., Modai, D., Shaked, U., Samuel, R., Arie, R., Halabe, A., Maor, J., Weissgarten, J., Averbukh, Z., Cohen, N., Edelstein, S. & Liberman, U. A. (1987). ‘ldiopathic’ hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. The New England Journal of Medicine 316, 125129.Google Scholar
Walker, J. J., Yan, T. S. & Quamme, G. A. (1987). Presence of multiple sodium-dependent phosphate transport processes in proximal brush-border membranes. American Journal of Physiology 252, F226–F231.Google Scholar
Winters, R. W., Graham, J. B., Williams, T. F., McFalls, V. W. & Burnett, C. H. (1958). A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature. Medicine 37, 97142.Google Scholar
Yamaoka, K., Seino, Y., Satomura, K., Tanaka, Y., Yabuuchi, H. & Haussler, M. R. (1986). Abnormal relationship between serum phosphate concentration and renal 25-hydroxycolecalciferol-l-alpha-hydroxylase activity in X-linked hypophosphatic mice. Mineral and Electrolyte Metabolism 12, 194198.Google Scholar