Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T01:02:10.707Z Has data issue: false hasContentIssue false

Comparative evolution of P–M system and infection by the sigma virus in French and Spanish populations of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Annie Fleuriet
Affiliation:
Laboratoire de Génétique, Université de Clermonl Ferrand II, 63177 Aubière, Cedex, France
Robert Kalmes
Affiliation:
Laboratoire de Biocénotique Expérimentale des Agrosystèmes, Universite de Tours, 37200 Tours, France
Luis Pascual
Affiliation:
Departamento de Genética, Universitat de Valéncia, Doctor Moliner 50, 46100 Burjasot, Spain
Georges Periquet
Affiliation:
Laboratoire de Biocénotique Expérimentale des Agrosystèmes, Universite de Tours, 37200 Tours, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1983, an extensive survey of populations of D. melanogaster was started in a southern French region (Languedoc) in two non-Mendelian systems: the P–M system of transposable elements and the hereditary Rhabdovirus sigma. Unexpectedly fast-evolving phenomena were observed and interesting correlations were noted, giving similar geographical pattern to the region in both systems. For these reasons, the analysis was continued and extended towards the north (Rhône Valley) and the south (Spain). In the P–M system, all the Languedoc populations evolved from 1983 to 1991 towards the Q type which is characteristic of the Rhône Valley populations. In contrast, M′ strains are currently observed in the southernmost French populations and in all Spanish ones, so that there is a clear pattern in their geographical distribution.

The frequency of flies infected by the sigma virus dramatically increased from 1983 to 1988 in Languedoc; this increase was clearly correlated with some viral characteristics. But, in northern France, similar characteristics did not trigger any increase in the frequency of infected flies. The data presented here show that the distinctive features of Languedoc extend northwards through the Rhone Valley up to Lyon and disappears southwards before the Spanish border.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Anxolabéhère, D.Nouaud, D.Periquet, G. & Ronsseray, S. (1986). Evolution des potentialités dysgénésiques du système P—M dans des populations expérimentales mixtes, P, Q, M, et M' de D. melanogaster. Genetica 69, 8195.CrossRefGoogle Scholar
Anxolabéhère, D.Charles-Palabost, L.Fleuriet, A. & Periquet, G. (1988 a). Temporal surveys of French populations of D. melanogaster: P-M system, enzymatic polymorphism and infection by the sigma virus. Heredity 61, 121131.CrossRefGoogle Scholar
Anxolabéhère, D.Kidwell, M. G. & Periquet, G. (1988 b). Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of D. melanogaster by mobile P elements. Molecular Biology and Evolution 5 (3), 252269.Google ScholarPubMed
Black, D. M.Jackson, M. S.Kidwell, M. G. & Dover, G. A. (1987). KP elements repress P-induced hybrid dysgenesis in D. melanogaster. EM BO Journal 6, 41134123.Google Scholar
Brun, G. & Plus, N. (1980). The viruses of Drosophila. In The Genetics and Biology of Drosophila, (ed. Ashburner, M. and Wright, T. R. F.), pp. 626702. New York: Academic Press.Google Scholar
Culliton, B.J. (1990). Emerging viruses, emerging threat. Science 247, 279280.CrossRefGoogle ScholarPubMed
Daniels, S. B.Peterson, K. R.Strausbaugh, L. D.Kidwell, M. G. & Chovnick, A. (1990). Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124, 339355.CrossRefGoogle Scholar
David, J. (1959). Etude quantitative du développement de la Drosophile élevée en milieu axénique. Bull. Soc. Biol. Fr. Belg. 93, 472505.Google Scholar
Emeny, J. M. & Lewis, M. J. (1984). Sigma virus of Drosophila as a vector model. In Vectors in Virus Biology, (ed. Mayo, M. A. and Harraps, K. A.), pp. 93112. New York: Academic Press.Google Scholar
Engels, W. R. (1979). Hybrid dysgenesis in D. melanogaster: rules of inheritance of female sterility. Genetical Research 33, 219236.CrossRefGoogle Scholar
Engels, W. R. (1989). P elements in Drosophila. In Mobile DNA, (ed. Berg, D. and Howe, M.), pp. 437484. ASM Publications.Google Scholar
Fleuriet, A. (1976). Presence of the heredity Rhabdovirus sigma and polymorphism for a gene for resistance to this virus in natural populations of Drosophila melanogaster. Evolution 30, 735739.CrossRefGoogle Scholar
Fleuriet, A. (1980). Polymorphism of the hereditary sigma virus in natural populations of D. melanogaster. Genetics 95, 459465.CrossRefGoogle Scholar
Fleuriet, A. (1988). Maintenance of a hereditary virus, the sigma virus in populations of its host D, melanogaster. In Evolutionary Biology, vol. 23, pp. 130 (ed. Hecht, M. K. and Wallace, B.), New York: Plenum.Google Scholar
Fleuriet, A. (1990). Evolution of natural populations in the D. melanogaster-sigma virus system. II. Northern and Central France. Genetica 81, 3341.CrossRefGoogle Scholar
Fleuriet, A.Periquet, G. & Anxolabehere, D. (1990). Evolution of natural populations in the D. melanogaster-sigma virus system. I. Languedoc (Southern France). Genetica 81, 2131.CrossRefGoogle Scholar
Fleuriet, A. & Periquet, G. (1992). Evolution of the D. melanogaster-sigma virus system in natural populations of Languedoc (Southern France). Submitted. Gay P., (1978). Les genes de la Drosophile qui interviennent dans la multiplication du virus sigma. Mol. gen. Gen. 159, 269283.Google Scholar
Jackson, M. S.Black, D. M. & Dover, G. A. (1988). Amplification of KP elements associated with the repression of hybrid dysgenesis in D. melanogaster. Genetics 120, 10031013.CrossRefGoogle Scholar
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determinants in D. melanogaster. Proceedings of the Natural Academy of Sciences U.S.A. 80, 16551659.CrossRefGoogle Scholar
Periquet, G. (1980). ‘Atrophie gonadique’ character and hybrid dysgenesis in D. melanogaster. Biol. Cellulaire 39, 712.Google Scholar
Periquet, G.Ronsseray, S. & Hamelin, M. H. (1989). Are D. melanogaster populations under a stable geographical differentiation due to the presence of P elements? Heredity 63, 4758.CrossRefGoogle Scholar
Plus, N. (1954). Etude de la multiplication du virus de la sensibilite au gaz carbonique chez la Drosophile. Bull. Soc. Biol. Fr. Belg. 88, 146.Google Scholar
Vouidibio, J.Capy, P.Defaye, D.Pla, E.Sandrin, J.Csink, A. & David, J. R. (1989). Short range genetic structure of D. melanogaster populations in an Afrotropical urban area and its significance. Proceedings of the National Academy of Sciences U.S. A 86, 84428446.CrossRefGoogle Scholar