Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T06:56:34.374Z Has data issue: false hasContentIssue false

Chromosomal locations of catA, pobA, pcaA, dcu and chu genes in Pseudomonas aeruginosa

Published online by Cambridge University Press:  14 April 2009

Hideki Matsumoto
Affiliation:
Department of Bacteriology, School of Medicine, Shinshu University, Matsumoto 390, Japan
Teruko Nakazawa
Affiliation:
Department of Bacteriology, School of Medicine, Juntendo University, Hongo 2-1-1, Tokyo 113, Japan
Shin Ohta
Affiliation:
Department of Bacteriology, School of Medicine, Shinshu University, Matsumoto 390, Japan
Yoshiro Terawaki
Affiliation:
Department of Bacteriology, School of Medicine, Shinshu University, Matsumoto 390, Japan
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eleven catabolic markers have been located on the chromosome of Pseudomonas aeruginosa PAO using FPS-mediated conjugation and G101 transduction. Most of these markers are located in the region 20–35 min, and the remainder in the region later than 60 min. Four chu genes concerned in the sequential degradation of choline to glycine are closely linked.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

Bater, A. J. & Venables, W. A. (1977). The characterization of inducible dehydrogenase specific for the oxidation of D-alanine, allohydroxy-D-proline, choline and sarcosine as peripheral membrane protein in Pseudomonas aeruginosa. Biochimica et Biophysica Acta 468, 209226.CrossRefGoogle ScholarPubMed
Clarke, P. H. & Richmond, M. H. (1975). Genetics and biochemistry of Pseudomonas. London: J. Wiley.Google Scholar
Frisell, W. R., Cronin, J. R. & Mackenzie, C. G. (1962). Coupled flavoproteins in mitochondrial oxidation of TV-methyl groups: Purufucation of the electron transfer flavoprotein. Journal of Biological Chemistry 237, 29752980.CrossRefGoogle Scholar
Gibson, D. T. (1971). Assay of enzymes of aromatic metabolism. In Methods in Microbiology, vol. 6A (ed. Norris, J. R. and Ribbons, D. W.), pp. 463478. London: Academic Press.Google Scholar
Glover, S. W. (1968). The induction, isolation and analysis of auxotrophic mutants. In Experiments in Microbial Genetics (ed. Clowes, R. C. and Hayes, W.), pp. 1721. Oxford: Blackwell Scientific Publications.Google Scholar
Hoet, P. P. & Stanier, R. ?. (1970 a). The dissimilation of higher dicarboxylic acids by Pseudomonas fluorescens. European Journal of Biochemistry 13, 6570.CrossRefGoogle Scholar
Hoet, P. P. & Stanier, R. Y. (1970 b). Existence andfunction of twoenzymes with β-ketoadipate: Succinyl-CoA transferase activity in Pseudomonas fluorescens. European Journal of Biochemistry 13, 7176.CrossRefGoogle Scholar
Holloway, B. W. (1969). Genetics of Pseudomonas. Bacteriological Reviews 33, 419443.CrossRefGoogle ScholarPubMed
Holloway, B. W., Krishnapillai, V. & Morgan, A. F. (1979). Chromosomal genetics of Pseudomonas. Microbiological Reviews 43, 73102.CrossRefGoogle ScholarPubMed
Ikuta, S., Matsuura, K., Imamura, S., Misaki, H. & Horiuchi, Y. (1977). Oxidative pathway of choline to betaine in the soluble fraction from Arthrobacter globiformis. Journal of Biochemistry 82, 157163.CrossRefGoogle ScholarPubMed
Jellinek, M., Strength, D. R. & Thayer, S. A. (1959). Isolation and identification of the products of the oxidation of choline. Journal of Biological Chemistry 234, 11711173.CrossRefGoogle ScholarPubMed
Kemp, M. B. & Hegeman, G. D. (1968). Genetic control of β-ketoadipate pathway in Pseudomonas aeruginosa. Journal of Bacteriology 96, 14881499.CrossRefGoogle ScholarPubMed
Kemp, M. B. & Hegeman, G. D. (1971). Genetics of mandelate pathway in Pseudomonas aeruginosa. Journal of Bacteriology 108, 12701276.Google Scholar
Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Matsumoto, H., Ohta, S., Kobayashi, R. & Terawaki, Y. (1978). Chromosomal location of genes participating in the degradation of purines in Pseudomonas aeruginosa. Molecular and General Genetics 167, 165176.CrossRefGoogle ScholarPubMed
Nagasawa, T., Kawabata, Y., Tani, Y. & Ogata, K. (1976 a). Purification and characterization of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa A-16. Agricultural and Biological Chemistry 40, 17431749.Google Scholar
Nagasawa, T., Mori, N., Tani, Y. & Ogata, K. (1976 b). Characterization of choline dehydrogenase from Pseudomonas aeruginosa A-16. Agricultural and Biological Chemistry 40, 20772084.Google Scholar
Ornston, L. N. & Stanier, R. Y. (1966). The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. Journal of Biological Chemistry 241, 37763786.CrossRefGoogle ScholarPubMed
Rosenberg, S. L. & Heoeman, G. D. (1969). Clustering of functionally related genes in Pseudomonas aeruginosa. Journal of Bacteriology 99, 353355.CrossRefGoogle ScholarPubMed
Royle, P. M., Matsumoto, H. & Holloway, B. W. (1981). Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. Journal of Bacteriology 145, 145155.CrossRefGoogle ScholarPubMed
Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. (1966). The aerobic Pseudomonas: a taxonomic study. Journal of General Microbiology 43, 159271.CrossRefGoogle ScholarPubMed
Wheelis, M. L. (1975). The genetics of dissimilatory pathway in Pseudomonas. Annual Review of Microbiology 29, 505524.CrossRefGoogle Scholar