Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T00:34:25.978Z Has data issue: false hasContentIssue false

Chromosomal change and rectangular evolution in North American cyprinid fishes*

Published online by Cambridge University Press:  14 April 2009

J. R. Gold
Affiliation:
Genetics Section, Texas A & M University, College Station, Texas 77843, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An important question in evolutionary biology concerns the manner and tempo in which organismal and/or genetic changes that promote evolutionary divergence occur. One recent hypothesis, termed rectangular evolution, holds that most significant evolutionary change occurs during occasional or periodic speciation episodes, with long periods of evolutionary stability in the interim. An alternative view, termed phyletic gradualism, holds that evolutionary divergences proceed by the slow and even accumulation of genetic differences within populations of established species. Two brief tests of rectangular evolution are presented using chromosomal data from North American cyprinid fishes (minnows), a group known to have experienced heterogeneous rates of splitting. Within the rapidly speciated genus Notropis, rates of chromosomal evolution appear slower relative to other, less rapidly speciated confamilial genera. Species of Notropis also are less divergent chromosomally, on the average, than are species from other cyprinid genera. These results are in compatible with a rectangular mode of chromosomal divergence these fishes. The results also reveal inconsistencies with a gradual mode chromosomal divergence, but at present this hypothesis cannot be falsified. Consideration of these and other data suggests that different levels of the cyprinid genome may follow independent evolutionary paths.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

References

REFERENCES

Árnason, Ú. (1974). Comparative chromosome studies in Cetacea. Hereditas 77, 136.CrossRefGoogle ScholarPubMed
Avise, J. C. (1977). Is evolution gradual or rectangular? Evidence from living fishes. Proceedings of the National Academy of Sciences (U.S.A.) 74, 50835087.Google Scholar
Avise, J. C. (1978). Variances and frequency distributions of genetic distance in evolutionary phylads. Heredity 40, 225237.CrossRefGoogle Scholar
Avise, J. C. & Ayala, F. J. (1975). Genetic change and rates of cladogenesis. Genetics 81, 757773.Google Scholar
Avise, J. C. & Ayala, F. J. (1976). Genetic differentiation in speciose versus depauperate phylads: evidence from the California minnows. Evolution 30, 4658.CrossRefGoogle ScholarPubMed
Avise, J. C., Smith, J. J. & Ayala, F. J. (1975). Adaptive differentiation with little genie change between two native California minnows. Evolution 29, 411426.CrossRefGoogle Scholar
Baker, R. J., Bass, R. A. & Johnson, M. A. (1979). Evolutionary implications of chromosomal homology in four genera of stenodermine bats (Phyllostomatidae: Chiroptera). Evolution 33, 220226.CrossRefGoogle ScholarPubMed
Bickham, J. W. (1979). Banded karyotypes of 11 species of American bats (genus Myotis). Cytologia (in the press).CrossRefGoogle Scholar
Bickham, J. W. & Baker, R. J. (1976). Chromosome homology and evolution of emydid turtles. Chromosoma 54, 201219.CrossRefGoogle ScholarPubMed
Bush, G. L., Case, S. M., Wilson, A. C. & Patton, J. L. (1977). Rapid speciation and chromosomal evolution in mammals. Proceedings of the National Academy of Sciences (U.S.A.) 74, 39423946.CrossRefGoogle ScholarPubMed
Carson, H. L. (1975). The genetics of speciation at the diploid level. American Naturalist 109, 8392.Google Scholar
Eldredge, N. (1971). The allopatric model and phylogeny in Paleozoic invertebrates. Evolution 25, 156167.CrossRefGoogle ScholarPubMed
Eldredge, N. & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In Models in Paleobiology (ed Schopf, T. J. M.), pp. 82115. San Francisco: Freeman, Cooper.Google Scholar
Gold, J. R., Womac, W. D., Deal, F. H. & Barlow, J. A. Jr. (1978). Gross karyotypic change and evolution in North American cyprinid fishes. Genetical Research 32, 3746.CrossRefGoogle Scholar
Gold, J. R., Karel, W. J. & Strand, M. R. (1979). Chromosome formulae of North American fishes. Texas Agricultural Experiment Station Publication no. MP-1411, pp. 124.Google Scholar
Gold, J. R., Womac, W. D., Deal, F. H. & Barlow, J. A. Jr. (1980). Cytogenetic studies in North American minnows (Cyprinidae). VII. Karyotypes of 13 species from the southern United States. Cytologia (in the press).Google Scholar
Gottlieb, L. D. (1976). Biochemical consequences of speciation in plants. In Molecular Evolution (ed. Ayala, F. J.), pp. 123140. Sunderland, Massachusetts: Sinauer.Google Scholar
Kimmel, P. B. (1975). Fishes of the Miocene–Pliocene Deer Butte formation, southeast Oregon. University of Michigan Museum of Paleontology Papers on Paleontology 14, 6987.Google Scholar
Kornfield, I. L., Ritte, U., Richler, C. & Wahrman, J. (1979). Biochemical and cytological differentiation among cichlid fishes of the Sea of Galilee. Evolution 33, 114.CrossRefGoogle ScholarPubMed
Mascarello, J. T., Stock, A. D. & Pathek, S. (1974). Conservatism in the arrangement of the genetic material in rodents. Journal of Mammalogy 55, 695704.Google Scholar
Miller, R. R. (1965). Quaternary freshwater fishes of North America. In The Quaternary of the United States (ed Wright, H. E. Jr. and Frey, D. G.), pp. 569581. Princeton University Press.Google Scholar
Patton, J. C. & Baker, R. J. (1978). Chromosomal homology and evolution of phyllostomatoid bats. Systematic Zoology 27, 449462.Google Scholar
Prager, E. M. & Wilson, A. C. (1975). Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution. Proceedings of the National Academy of Sciences (U.SA..) 72, 200204.CrossRefGoogle ScholarPubMed
Prager, E. M., Fowler, D. P. & Wilson, A. C. (1976). Rates of evolution in conifers (Pinaceae). Evolution 30, 637649.CrossRefGoogle ScholarPubMed
Ruzhentsev, V. Y. (1964). The problem of transition in paleontology. International Geology Review 6, 22042213.Google Scholar
Savage, D. E. (1975). Cenozoic – the primate episode. In Approaches to Primate Paleobiology (ed. F. S. Szalay). Contributions to Primatology 5, 227.Google Scholar
Simpson, G. G. (1944). Tempo and Mode in Evolution. New York: Columbia University Press.Google Scholar
Smith, G. R. (1975). Fishes of the Pliocene Glenns Ferry formation, southeast Idaho. University of Michigan Museum of Paleontology Papers on Paleontology 14, 168.Google Scholar
Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Sciences (U.S.A.) 72, 646650.CrossRefGoogle ScholarPubMed
Stock, A. D. & Hsu, T. C. (1973). Evolutionary conservatism in arrangement of genetic material. Chromosoma 43, 211224.Google Scholar
Stock, A. D., Arrighi, F. E. & Stephos, K. (1974). Chromosome homology in birds: banding patterns of the chromosomes of the domestic chicken, ring-necked dove and domestic pigeon. Cytogenetics and Cell Genetics 13, 410418.Google Scholar
Turner, B. J. (1974). Genetic divergence of Death Valley pupfish species: biochemical versus morphological evidence. Evolution 28, 281294.CrossRefGoogle ScholarPubMed
White, M. J. D. (1973). Animal Cytology and Evolution. Cambridge University Press.Google Scholar
White, M. J. D. (1977). Modes of Speciation. San Francisco: W. H. Freeman.Google Scholar
White, M. J. D. (1978). Chain processes in chromosomal speciation. Systematic Zoology 27, 285298.CrossRefGoogle Scholar
Wilson, A. C. (1975). Evolutionary importance of gene regulation. Stadler Genetics Symposium 7, 117134.Google Scholar
Wilson, A. C. (1976). Gene regulation in evolution. In Molecular Evolution (ed. Ayala, F. J.), pp. 225234. Sunderland, Massachusetts: Sinauer.Google Scholar
Wilson, A. C., Maxson, L. R. & Sarich, V. M. (1974 a). Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proceedings of the National Academy of Sciences (U.S.A.) 71, 28432847.CrossRefGoogle ScholarPubMed
Wilson, A. C., Sarich, V. M. & Maxson, L. R. (1974 b). The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein and anatomical evolution. Proceedings of the National Academy of Sciences (U.S.A.) 71, 30283030.CrossRefGoogle ScholarPubMed
Yosida, T. H. & Sagai, T. (1973). Similarity of Giemsa banding patterns of chromosomes in several species of the genus Rattus. Chromosoma 41, 93101.CrossRefGoogle ScholarPubMed