Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:33:25.166Z Has data issue: false hasContentIssue false

Choline-O-sulphate utilization in Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

Roy A. Gravel
Affiliation:
Department of Biology, Kline Biology Tower, Yale University, New Haven, Connecticut 06520
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The role of choline-O-sulphate (COS) as a sulphur storage compound in Aspergillus nidulans was examined by comparing a normal strain and one unable to utilize COS in a sulphur-starvation experiment designed to measure the mobilization of sulphur stores. Efforts to isolate the necessary mutants deficient in choline sulphatase activity produced two nutritionally distinct classes of mutants unable to utilize COS. They were found to be allelic on the basis of genetic complementation and fine structures mapping and represent either leaky or tight mutants with respect to choline sulphatase activity. One of these mutants with no detectable choline sulphatase activity was selected for a growth experiment which demonstrated that COS is a major, though not the only source of the endogenous sulphur supply which can be mobilized during growth in sulphur-limiting conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

References

REFERENCES

Arst, H. N. (1968). Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans. Nature, Lond. 219, 268270.CrossRefGoogle ScholarPubMed
Arst, H. N. (1971). Mutants of Aspergillus nidulans unable to use choline-O-sulphate. Genetical Research 17, 273277.CrossRefGoogle Scholar
Barratt, R. W., Johnson, G. B. & Ogata, W. N. (1965). Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52, 233246.CrossRefGoogle ScholarPubMed
Bellenger, N., Nissen, P., Wood, T. C. & Segel, I. H. (1968). Specificity and control of choline-O-sulphate transport in filamentous fungi. Journal of Bacteriology 96, 15741585.CrossRefGoogle ScholarPubMed
Bradfield, G., Somerfield, P., Meyn, T., Holby, M., Babcock, D., Bradley, D. & Segel, I. H. (1970). Regulation of sulphate transport of filamentous fungi. Plant Physiology 46, 720727.Google Scholar
Case, M. & Giles, N. H. (1958). Recombination mechanisms at the pan-2 locus in Neurospora crassa. Cold Spring Harbor Symposium on Quantitative Biology 23, 119135.CrossRefGoogle ScholarPubMed
Clutterbuck, A. J. & Sinha, U. K. (1966). N-methyl-N′-nitro-N-nitrosoguanidine (NTG) as a mutagen for Aspergillus nidulans. Aspergillus News Letter 7, 1213.Google Scholar
DeFlines, J. (1955). The occurrence of a sulfuric acid ester of choline in the mycelium of a strain of Penicillium chrysogenum. Journal of American Chemical Society 77, 16761677.CrossRefGoogle Scholar
DeVito, P. C. & Dreyfuss, J. (1964). Metabolic regulation of adenosine triphosphate sulphurylase in yeast. Journal of Bacteriology 88, 13411348.CrossRefGoogle ScholarPubMed
Dorn, G. L. (1967). A revised map of the eight linkage groups of Aspergillus nidulans. Genetics 56, 619631.CrossRefGoogle ScholarPubMed
Giles, N. (1951). Studies on the mechanism of reversion in biochemical mutants of Neurospora crassa. Cold Spring Harbor Symposium on Quantitative Biology 16, 283313.CrossRefGoogle ScholarPubMed
Gillespie, D., Demerec, M. & Itikawa, H. (1968). Appearance of double mutants in aged cultures of Salmonella typhimurium cysteine-requiring strains. Genetics 59, 433442.Google Scholar
Harada, T. & Spencer, B. (1960). Choline sulphate in fungi. Journal of General Microbiology 22, 520627.Google Scholar
Hockenhull, D. J. D. (1948). Studies in penicillin production by Penicillium notatum in surface culture. 2. Further studies in the metabolism of sulphur. Biochemical Journal 43, 498504.Google Scholar
Hockenhull, D. J. D. (1949). The sulphur metabolism of mould fungi: the use of ‘biochemical mutant’ strains of Aspergillus nidulans in elucidating the biosynthesis of cysteine. Biochimica et biophysica acta 3, 326335.Google Scholar
Itahashi, M. (1961). Comparative biochemistry of choline sulfate metabolism. Journal of Biochemistry 50, 5261.CrossRefGoogle ScholarPubMed
Käfer, E. (1958). An 8-chromosome map of Aspergillus nidulans. Advances in Genetics 9, 105145.CrossRefGoogle ScholarPubMed
Käfer, E. (1965). Origins of translocations in Aspergillus nidulans. Genetics 52, 217232.Google Scholar
Kaji, A., & Gregory, J. D. (1959). Mechanism of sulfurylation of choline. Journal of Biological Chemistry 234, 30073009.CrossRefGoogle ScholarPubMed
McCully, K. S. & Forbes, E. (1965). The use of p-fluorophenyl-analine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6, 352359.CrossRefGoogle ScholarPubMed
Macdonald, K. D. & Pontecorvo, G. (1953). In ‘The genetics in Aspergillus nidulans’, by Pontecorvo, G., Roger, J. A., Hemmons, L. M., Macdonald, K. D. and Bufton, A. W. J.. Advances in Genetics 5, 159170.Google Scholar
Marzluff, G. A. (1970). Genetic and biochemical studies of distinct sulphate permease species in different developmental stages of Neurospora crassa. Archives of Biochemical Biophysics 138, 254263.CrossRefGoogle Scholar
Marzluff, G. A. & Metzenberg, R. L. (1968). Positive control by the cys-3 locus in regulation of sulphur metabolism in Neurospora. Journal of Molecular Biology 33, 423437.CrossRefGoogle Scholar
McGuire, W. G. & Marzluff, G. A. (1974). Sulphur storage in Neurospora: soluble sulphur pools of several developmental stages. Archives of Biochemical Biophysics 161, 570580.Google Scholar
Metzenberg, R. L. & Parson, J. W. (1966). Altered repression of some enzymes of sulpur utilization in a temperature-conditional lethal mutant of Neurospora. Proc. Nat. Acad. Sci. U.S.A. 55, 629635.CrossRefGoogle Scholar
Murray, N. E. (1965). Cysteine mutant strains of Neurospora. Genetics 52, 801808.CrossRefGoogle ScholarPubMed
Orsi, B. A. & Spencer, B. (1964). Choline sulphokinase (sulphotransferase). Journal of Biochemistry 56, 8191.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 142239.Google Scholar
Pritchard, R. H. (1955). The linear arrangement of a series of alleles of Aspergillus nidulans. Heredity 9, 343371.Google Scholar
Roper, J. A. (1952). Production of heterozygous diploids in filamentous fungi. Experentia 8, 1415.Google Scholar
Roper, J. A. (1970). Clearing house for gene symbols, locus letters and allele numbers. Aspergillus News Letter 11, 2533.Google Scholar
Schmidt, E. & Wagner, W. (1904). Über Cholin, Nevrin und verwandte Verbindungen. Annals of Chemistry 337, 5162.Google Scholar
Scott, J. B. & Spencer, B. (1968). Regulation of choline sulphatase synthesis and activity in Aspergillus nidulans. Biochemical Journal 106, 471477.Google Scholar
Segel, I. H. & Johnson, M. J. (1963). Intermediates in inorganic sulphate utilization by Penicillium chrysogenum. Archives of Biochemical Biophysics 103, 216226.Google Scholar
Segel, I. H. & Johnson, M. J. (1967). Hydrolysis of choline-O-sulphate by cell free extracts from Penicillium. Biochemica et biophysica acta 69, 433434.Google Scholar
Siddiqi, O. H. (1962). The fine genetic structure of the pabal region of Aspergillus nidulans. Genetical Research 3, 6989.CrossRefGoogle Scholar
Spencer, B. & Harada, T. (1960). The role of choline sulphate in sulphur metabolism of fungi. Biochemical Journal 77, 305315.Google Scholar
Spencer, B., Hussey, E. C., Orsi, B. A. & Scott, J. M. (1968). Mechanism of choline-O-sulphate utilization in fungi. Biochemical Journal 106, 461469.Google Scholar
Stevens, C. M. & Vohra, P. (1955). Occurrence of choline sulphate in Penicillium chrysogenum. Journal of American Chemical Society 77, 49354936.CrossRefGoogle Scholar
Takebe, I. (1960). Choline sulphate as a major soluble sulphur compound of conidiospores of Aspergillus niger. Journal of General Applied Microbiology (Tokyo) 6, 8389.CrossRefGoogle Scholar
Takebe, I. & Yanagita, T. (1959). Origin of amino acids constituting cellular protein in germinating conidiospores of Aspergillus niger. Plant and Cell Physiology 1, 1728.Google Scholar
Wheldrake, J. F. (1967). Intracellular concentration of cysteine in Escherichia coli and its relation to repression of the sulphate-activating enzymes. Biochemical Journal 105, 697699.Google Scholar
Wheldrake, J. F. & Pasternak, C. A. (1965). The control of sulphate activation in bacteria. Biochemical Journal 96, 276280.CrossRefGoogle ScholarPubMed
Wooley, D. W. & Peterson, W. H. (1937). The chemistry of mold tissue. XIV. Isolation of cyclic choline sulphate from Aspergillus sydowi. Journal of Biological Chemistry, 122, 213218.Google Scholar