Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T18:57:46.040Z Has data issue: false hasContentIssue false

Characterization of MR (P) strains of Drosophila melanogaster: the number of intact P elements and their genetic effect

Published online by Cambridge University Press:  14 April 2009

Jan C. J. Eeken*
Affiliation:
Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, State University of Leiden, Wassenaarseweg 72, Leiden, The Netherlands J. A. Cohen Interuniversity ResearchInstitute for Radiopathology and Radiation Protection, Leiden, The Netherlands
Ron J. Romeyn
Affiliation:
Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, State University of Leiden, Wassenaarseweg 72, Leiden, The Netherlands J. A. Cohen Interuniversity ResearchInstitute for Radiopathology and Radiation Protection, Leiden, The Netherlands
Anja W. M. De Jong
Affiliation:
Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, State University of Leiden, Wassenaarseweg 72, Leiden, The Netherlands J. A. Cohen Interuniversity ResearchInstitute for Radiopathology and Radiation Protection, Leiden, The Netherlands
George Yannopoulos
Affiliation:
Department of Genetics, University of Patras, Patras, Greece
Albert Pastink
Affiliation:
Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, State University of Leiden, Wassenaarseweg 72, Leiden, The Netherlands
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To study the effect of mutagenic/carcinogenic agents on P-element transposition, the P strains used should be denned, especially with respect to the number of intact and functional P elements present. In this investigation, the relation between the number of complete P elements present in dysgenic males and P-insertion mutagenesis was studied in several MR (P) strains. The main conclusions from this investigation are: (1) Complete P elements can be present in the genome without genetic activity (even in a ‘dysgenic’ cross). As a consequence, the number of complete P elements present in particular dysgenic flies, is not necessarily an indication of their dysgenic genetic activity. (2) The MR-h12/Cy strain carries two complete P elements, one on the X chromosome without and one on the MR chromosome with genetic activity (making this strain most suitable for studies on P-transposition mechanisms).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Benton, W. D. & Davis, R. W. (1977). Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science 196, 180182.CrossRefGoogle Scholar
Black, D. M.Jackson, M. S.Kidwell, M. G. & Dover, G. A. (1987). KP elements repress P-induced hybrid dysgenesis in D. melanogaster. EMBO Journal 6, 41254135.CrossRefGoogle Scholar
Bregliano, J. C. & Picard, G. (1980). Hybrid dysgenesis in Drosophila melanogaster. Science 207, 606611.CrossRefGoogle ScholarPubMed
Bregliano, J. C. & Kidwell, M. G. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 363410. New York: Academic Press.Google Scholar
Eeken, J. C. J. (1982). The stability of mutator (MR)-induced X-chromosomal recessive visible mutations in Drosophila melanogaster. Mutation Research 96, 213224.CrossRefGoogle ScholarPubMed
Eeken, J. C. J. & Sobels, F. H. (1981). Modification of MR mutator activity in repair-deficient strains of Drosophila melanogaster. Mutation Research 83, 191200.CrossRefGoogle ScholarPubMed
Eeken, J. C. J. & Sobels, F. H. (1983 a). The influence of deficiencies in DNA-repair on MR-mediated reversion of an insertion-sequence mutation in Drosophila melanogaster. Mutation Research 110, 287295.CrossRefGoogle ScholarPubMed
Eeken, J. C. J. & Sobels, F. H. (1983 b). The effect of two chemical mutagens, ENU and MMS on MR-mediated reversion of an insertion-sequence mutation in Drosophila melanogaster. Mutation Research 110, 297310.CrossRefGoogle ScholarPubMed
Eeken, J. C. J. & Sobels, F. H. (1986). The effect of Xirradiation and formaldehyde treatment of spermatogonia on the reversion of an unstable, P-element insertion mutation in Drosophila melanogaster. Mutation Research 175, 6165.Google Scholar
Eeken, J. C. J.Sobels, F. H.Hyland, V. & Schalet, A. P. (1985). Distribution of MR-induced sex-linked recessive lethal mutations in Drosophila melanogaster. Mutation Research 150, 261275.CrossRefGoogle ScholarPubMed
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315344.CrossRefGoogle Scholar
Engels, W. R. (1989). P elements in Drosophila. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 437484. Washington D. C.: American Society for Microbiology.Google Scholar
Engels, W. R.Preston, C. R.Thompson, P. & Eggleston, W. B. (1986). In situ hybridization to Drosophila salivary chromosomes with biotinylated DNA probes and alkaline phosphatase. FOCUS 8 (1), 68.Google Scholar
Frischauf, A. M.Lehrach, H.Poustka, A. & Murray, N. (1983). Lambda replacement vectors carrying polylinker sequences. Journal of Molecular Biology 170, 827842.CrossRefGoogle ScholarPubMed
Green, M. M. (1977). Genetic instability in Drosophila melanogaster: de novo induction of putative insertion mutations. Proceedings of the National Academy of Sciences, USA 74, 34903493.CrossRefGoogle ScholarPubMed
Green, M. M. (1978). The genetic control of mutation in Drosophila. Stadler Symposia 10, 95105.Google Scholar
Green, M. M. (1986). Genetic instability in Drosophila melanogaster: the genetics of an MR element that makes complete P element insertion mutations. Proceedings of the National Academy of Sciences, USA 83, 10361040.CrossRefGoogle Scholar
Hiraizumi, Y. (1971). Spontaneous recombination in Drosophila melanogaster males. Proceedings of the National Academy of Sciences, USA 68, 268270.CrossRefGoogle ScholarPubMed
Jackson, M.S.Black, D. M. & Dover, G. A. (1988). Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster. Genetics 120, 10031013.CrossRefGoogle ScholarPubMed
Kaufman, P. D.Doll, R. F. & Rio, D. C. (1989). Drosophila P-element transposase recognizes internal P element DNA sequences. Cell 59, 359371.CrossRefGoogle ScholarPubMed
Kidwell, M. G.Kidwell, J. F. & Ives, P. T. (1977). Spontaneous non-reciprocal mutation and sterility in strain crosses of Drosophila melanogaster. Mutation Research 42, 8998.CrossRefGoogle Scholar
Laski, F. A.Rio, D. C. & Rubin, G. M. (1986). Tissue specificity of Drosophila P-element transposition is regulated at the level of mRNA splicing. Cell 44, 719.CrossRefGoogle ScholarPubMed
Maniatis, T.Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
McGinnis, W.Shermoen, A. W. & Beckendorf, S. K. (1983). A transposable element inserted just 5' to a Drosophila glue protein alters gene expression and chromatin structure. Cell 34, 7584.CrossRefGoogle ScholarPubMed
Messing, J. & Vieira, J. (1982). A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19, 269276.CrossRefGoogle ScholarPubMed
O'Hare, K. & Rubin, G. M. (1983). Structure of P transposable elements of Drosophila melanogaster and their sites of insertion and excision. Cell 34, 2535.CrossRefGoogle ScholarPubMed
Pastink, A.Vreeken, C.Vogel, E. W. & Eeken, J.C.J. (1990). Mutations induced at the white and vermilion loci in Drosophila melanogaster. Mutation Research 231, 6371.CrossRefGoogle ScholarPubMed
Rio, D. CLaski, F. A. & Rubin, G. M. (1986). Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell 44, 2132.CrossRefGoogle ScholarPubMed
Rubin, G. M. & Spradling, A. C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science 218, 348353.CrossRefGoogle ScholarPubMed
Sanger, F.Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463.CrossRefGoogle ScholarPubMed
Simmons, M. J.Johnson, N. A.Fahey, T. M.Nellett, S. M. & Raymond, J. D. (1980). High mutability in male hybrids of Drosophila melanogaster. Genetics 96, 479490.CrossRefGoogle ScholarPubMed
Simmons, M. J.Raymond, J. D.Culbert, T. P. & Laverty, T. R. (1984). Analysis of dysgenesis-induced lethal mutations on the X-chromosome of a Q strain of Drosophila melanogaster. Genetics 107, 4963.CrossRefGoogle Scholar
Simmons, M. J. & Bucholz, L. M. (1985). Transposase titration in Drosophila melanogaster: a model of cytotype in the P-M system of hybrid dysgenesis. Proceedings of the National Academy of Sciences, USA 82, 81198123.CrossRefGoogle Scholar
Slatko, B. C. & Hiraizumi, Y. (1973). Mutation induction in the male recombination strains of Drosophila melanogaster. Genetics 75, 643649.CrossRefGoogle ScholarPubMed
Slatko, B. C. & Green, M. M. (1980). Genetic instability in Drosophila melanogaster. Mapping the mutator activity of an MR-strain. Biologisches Zentralblatt 99, 149155.Google Scholar
Sobels, F. H. & Eeken, J. C. J. (1981). Influence of the MR (mutator) factor on X-ray-induced genetic damage. Mutation Research 83, 201206.CrossRefGoogle ScholarPubMed
Spradling, A. C. & Rubin, G. M. (1982). Transposition of cloned P-elements into Drosophila germ line chromosomes. Science 218, 341347.CrossRefGoogle ScholarPubMed
Strauss, E. CKobori, J. A.Siu, G. & Hood, L. E. (1986). Specific-primer-directed DNA sequencing. Analytical Biochemistry 154, 353360.CrossRefGoogle ScholarPubMed
Würgler, F. E.Sobels, F. H. & Vogel, E. (1977). Drosophila as assay system for detecting genetic changes. In Handbook of Mutagenicity Test Procedures (ed. Kilbey, et al. ), pp. 335374. Elsevier/North-HollandBiomedical Press.Google Scholar
Yannopoulos, G. (1978). Studies on male recombination in a Southern Greek Drosophila melanogaster population, (c) Chromosomal abnormalities at male meiosis, (d) cytoplasmic factor responsible for the reciprocal cross effects. Genetical Research 31, 187196.CrossRefGoogle Scholar
Yannopoulos, G. & Pelecanos, M. (1977). Studies on male recombination in a Southern Greek Drosophila melanogaster population, (a) Effect of temperature, (b) suppression of male recombination in reciprocal crosses. Genetical Research 29, 231238.CrossRefGoogle Scholar
Yannopoulos, G.Stamatis, N. & Eeken, J.C.J. (1986). Differences in the cytotype and hybrid dysgenesis inducer ability of different P-strains of Drosophila melanogaster. Experientia 42, 12831285.CrossRefGoogle Scholar
Zusman, S.Coulter, D. & Gergen, J. P. (1985). Lethal mutations induced in the proximal X-chromosome of Drosophila melanogaster using P—M hybrid dysgenesis. Drosophila Information Service 61, 217218.Google Scholar