Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T16:36:18.241Z Has data issue: false hasContentIssue false

Changes in genetic constitution and sterol composition during growth of nystatin-resistant heterokaryons of Neurospora crassa

Published online by Cambridge University Press:  14 April 2009

Jill E. Ogden
Affiliation:
Department of Genetics, University of Sheffield, Sheffield S10 2TN
Morris Grindle
Affiliation:
Department of Genetics, University of Sheffield, Sheffield S10 2TN
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Heterokaryons of N. crassa were synthesized from homokaryotic strains differing in sterol composition and sensitivity to the polyene antibiotic nystatin. Mycelia of the nystatin-sensitive strain erg-1+ contained ergosterol and episterol, and the nystatin-resistant mutant erg-1 contained fecosterol and lichesterol. Mycelia of heterokaryons with different proportions of erg-1+: erg-1 nuclei contained various proportions of the four sterols. Ergosterol was the principal sterol in heterokaryons with more than 5% erg-1+ nuclei.

Heterokaryons with various proportions of erg-1+:erg-1 nuclei were grown for several weeks along tubes of synthetic media. Growth rates were stable on minimal medium and nutritionally supplemented media but nuclear proportions often fluctuated. Growth rates fell sharply on nystatin-supplemented media and there were adaptive increases in proportions of mutant erg-1 nuclei which resulted in selection of nystatin-resistant homokaryotic mycelia.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Atwood, K. C. & Mukai, F. (1955). Nuclear distribution in conidia of Neurospora heterokaryons. Genetics 40, 438443.CrossRefGoogle ScholarPubMed
Atwood, K. C. & Pittenger, T. H. (1955). The efficiency of nuclear mixing during heterokaryon formation in Neurospora crassa. American Journal of Botany 42, 496500.Google Scholar
Barthelmess, I., Curtis, C. & Kacser, H. (1974). Control of the flux of arginine in N. crassa: De-repression of the last three enzymes of the arginine pathway. Journal of Molecular Biology 87, 303316.CrossRefGoogle Scholar
Beadle, G. W. & Coonradt, V. L. (1944). Heterokaryosis in Neurospora crassa. Genetics 29, 291308.CrossRefGoogle Scholar
Clutterbuck, A. J. (1970). Synchronous nuclear division and septation in Aspergillus nidulans. Journal of General Microbiology 60, 133135.CrossRefGoogle ScholarPubMed
Davis, R. H. (1960). Adaptation in pantothenate-requiring Neurospora. II. Nuclear competition during adaptation. American Journal of Botany 47, 648654.CrossRefGoogle Scholar
Davis, R. H. (1966). Heterokaryosis. In The Fungi, vol. II (ed. Ainsworth, G. C. and Sussman, A. S.), pp. 567588. London: Academic Press.Google Scholar
De Serres, F. J. (1962). A simple device for rapid preparation of conidial suspensions of Neurospora. Neurospora Newsletter 1, 1011.Google Scholar
Fraser, R. D. B. & Suzuki, E. (1973). The use of least squares in data analysis. In Physical Principles and Techniques of Protein Chemistry, part C (ed. Leach, S. J.), pp. 301355. New York: Academic Press.Google Scholar
Flentje, N. T., Stretton, H. M. & Hawn, E. J. (1963). Nuclear distribution and behaviour throughout the life cycles of Thanatephorus, Waitea and Ceratobasidium species. Australian Journal of Biological Sciences 16, 450467.CrossRefGoogle Scholar
Grindle, M. (1973). Sterol mutants of Neurospora crassa: their isolation, growth characteristics and resistance to polyene antibiotics. Molecular and General Genetics 120, 283290.Google Scholar
Grindle, M. (1974). The efficacy of various mutagens and polyene antibiotics for the induction and isolation of sterol mutants of Neurospora crassa. Molecular and General Genetics 130, 8190.Google Scholar
Grindle, M. & Farrow, R. (1978). Sterol content and enzyme defects of nystatin-resistant mutants of Neurospora crassa. Molecular and General Genetics 165, 305308.CrossRefGoogle ScholarPubMed
Grindle, M. & Pittenger, T. H. (1968). Phenotypic and genetic changes during prolonged growth of Neurospora heterokaryons. Genetics 58, 337349.CrossRefGoogle ScholarPubMed
Huebschman, C. (1952). A method for varying the average number of nuclei in the conidia of Neurospora crassa. Mycologica 44, 599604.Google Scholar
Kacser, H. & Burns, J. A. (1973). The control of flux. Symposia of the Society for Experimental Biology 27, 65104.Google ScholarPubMed
Lampen, J. O., Arnow, P. M., Borowska, Z. & Laskin, A. I. (1962). Location and role of sterol at nystatin-binding sites. Journal of Bacteriology 84, 11521160.CrossRefGoogle ScholarPubMed
McDougall, K. J. & Pittenger, T. H. (1962). Observations of perpetual hyphal propagation in Neurospora. Neurospora Newsletter 2, 1011.Google Scholar
Morris, D. C., Safe, S. & Subden, R. E. (1974). Detection of the ergosterol and episterol isomers lichesterol and fecosterol in nystatin-resistant mutants of Neurospora crassa. Biochemical Genetics 12, 459466.Google Scholar
Ogden, J. E. (1982). Genetic and biochemical studies of heterokaryons of Neurospora crassa. Ph.D. thesis, University of Sheffield.Google Scholar
Parks, L. W. (1978). Metabolism of sterols in yeast. CRC Critical Reviews in Microbiology 6, 301341.CrossRefGoogle ScholarPubMed
Pierce, A. M., Pierce, H. D., (Jr.) Unrau, A. M., Oehlschlager, A. C., Subden, R. E. & Renaud, R. L. (1979). The biosynthesis of the free sterols and sterol esters of Neurospora crassa. Canadian Journal of Biochemistry 57, 112116.Google Scholar
Pittenger, T. H. (1964). Conidial plating techniques and determination of nuclear ratios in heterokaryotic cultures. Neurospora Newsletter 6, 2326.Google Scholar
Pittenger, T. H. & Atwood, K. C. (1954). The relation of growth rate to nuclear ratio in Neurospora heterokaryons. Genetics 39, 987988.Google Scholar
Pittenger, T. H. & Atwood, K. C. (1956). Stability of nuclear proportions during growth of Neurospora heterokaryons. Genetics 41, 227241.CrossRefGoogle ScholarPubMed
Pittenger, T. H. & Brawner, T. G. (1961). Genetic control of nuclear selection in Neurospora heterokaryons. Genetics 46, 16451663.CrossRefGoogle ScholarPubMed
Pittenger, T. H., Kimball, A. W. & Atwood, K. C. (1955). Control of nuclear ratios in Neurospora heterokaryons. American Journal of Botany 42, 954958.CrossRefGoogle Scholar
Rees, H. & Jinks, J. L. (1952). The mechanism of variation in Penicillium heterokaryons. Proceedings of the Royal Society B 140, 100106.Google Scholar
Ryan, F. J., Beadle, G. W. & Tatum, E. L. (1943). The tube method for measuring the growth rate of Neurospora. American Journal of Botany 30, 784799.CrossRefGoogle Scholar
Ryan, F. J. & Lederberg, J. (1946). Reverse mutations and adaptation in leucine-less Neurospora. Proceedings of the National Academy of Sciences, USA 32, 163173.CrossRefGoogle ScholarPubMed
Tatum, E. L., Barratt, R. W. & Cutter, V. M. (1949). Chemical induction of colonial paramorphs in Neurospora and Syncephelastrum. Science 109, 509511.CrossRefGoogle Scholar
Trinci, A. P. J. (1979). The duplication cycle and branching in fungi. In Fungal Walls and Hyphal Growth (ed. Burnett, J. H. and Trinci, A. P. J.), pp. 319358. Cambridge: Cambridge University Press.Google Scholar
Vogel, H. J. (1964). Distribution of lysine pathways among fungi: evolutionary implications. American Naturalist 98, 435446.CrossRefGoogle Scholar
Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97159.Google Scholar