Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T07:57:11.107Z Has data issue: false hasContentIssue false

Cell lineage analysis of kynurenine producing organs in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Moti Nissani
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Six hundred and ten gynandromorphs were produced in which an X chromosome loss uncovered the vermilion mutation. The mosaic patterns observed indicate that wild type ocelli are incapable of kynurenine production and that, in addition to the eyes, postembryonic kynurenine producing cells originate from two separate regions of the blastoderm. The positions of these regions on the genetic fate map of Drosophila melanogaster correspond to the embryonic precursors which give rise to the kynurenine producing cells of the larval fat body and Malpighian tubes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Beadle, G. W. (1937). Development of eye colours in Drosophila: fat bodies and Malpighian tubes in relation to diffusible substances. Genetics 22, 587611.CrossRefGoogle ScholarPubMed
Bryant, P. J. & Zornetzer, M. (1973). Mosaic analysis of lethal mutations in Drosophila. Genetics 75, 623637.CrossRefGoogle ScholarPubMed
Ephrussi, B. (1942). Chemistry of ‘eye color hormones’ of Drosophila. Quarterly Review of Biology 17, 327353.CrossRefGoogle Scholar
Falk, R., Orevi, N. & Menzl, B. (1973). A fate map of larval organs of Drosophila and preblastoderm determination. Nature New Biology 246, 1920.CrossRefGoogle ScholarPubMed
Garcia-Bellido, A. & Merriam, J. R. (1969). Cell lineage of the imaginal discs in Drosophila gynandromorphs. Journal of Experimental Zoology 170, 6175.CrossRefGoogle ScholarPubMed
Gelbart, W. M. (1974). A new mutant controlling mitotic chromosome disjunction in Drosophila melanogaster. Genetics 76, 5163.CrossRefGoogle ScholarPubMed
Hinton, C. W. (1955). The behaviour of an unstable ring chromosome of Drosophila melanogaster. Genetics 40, 951961.CrossRefGoogle ScholarPubMed
Hotta, Y. & Benzer, S. (1973). Mapping of behaviour in Drosophila mosaics. In Genetic Mechanisms of Development (ed. Ruddle, F. H.), pp. 126167. New York: Academic Press.Google Scholar
Janning, W. (1974). Entwicklungsgenetische untersuchungen an gynandern von Drosophila melanogaster. II. Der morphogenetische anlageplan. Wilhelm Roux' Archiv für Entwick-lungsmechanik der Organismen 174, 349359.CrossRefGoogle Scholar
Kaufman, S. (1962). Studies on tryptophan pyrrolase in Drosophila melanogaster. Genetics 47, 801817.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Institute of Washington Publications, 627.Google Scholar
Linzen, B. (1974). The tryptophan→ommochrome pathway in insects. In Advances in Insect Physiology, vol. 10 (ed. Treherne, J. E., Berridge, M. J. and Wigglesworth, V. B.), pp. 117246. London: Academic Press.Google Scholar
Merriam, J. R. & Lange, K. (1974). Maximum likelihood estimates for fate map locations of behavior in Drosophila. Developmental Biology 38, 196201.CrossRefGoogle ScholarPubMed
Nissani, M. (1975). A new behavioral bioassay for an analysis of sexual attraction and pheromones in insects. Journal of Experimental Zoology, in press.CrossRefGoogle ScholarPubMed
Poulson, D. F. (1950). Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster. In The Biology of Drosophila (ed. Demerec, M.), pp. 168274. New York: J. Wiley and Son.Google Scholar
Rizki, M. T. M. (1961). Intracellular localization of kynurenine in the fat body of Drosophila. Journal of Biophysical and Biochemical Cytology 9, 567572.CrossRefGoogle Scholar
Sonnenblick, B. P. (1950). The early embryology of Drosophila melanogaster. In The Biology of Drosophila (ed. Demerce, M.), pp. 62167. New York: J. Wiley and Son.Google Scholar
Strickberger, M. W. (1962). Experiments in Genetics with Drosophila. New York: J. Wiley and Son.Google Scholar
Sturtevant, A. H. (1920). The vermilion gene and gynandromorphism. Proceedings of the Society for Experimental Biology and Medicine 17, 7071.CrossRefGoogle Scholar
Sturtevant, A. H. (1932). The use of mosaics in the study of the developmental effect of genes. Proceedings of the Sixth International Congress of Genetics 1, 304307.Google Scholar
Wigglesworth, V. B. (1972). The Principles of Insect Physiology. London: Chapman and Hall.CrossRefGoogle Scholar