Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T05:53:10.900Z Has data issue: false hasContentIssue false

Cell autonomy of two DNA-repair mutations in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Pedro Ripoll
Affiliation:
Centro de Biologia Molecular (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
James A. Kennison
Affiliation:
Centro de Biologia Molecular (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By means of genetic mosaics we have studied the cell autonomy of mei-41 and mei-9, two loci involved in DNA metabolism. The frequency of spontaneous somatic spots resulting from unrepaired chromosome damage and the sensitivity of mutant cells to killing by X-irradiation - two traits indicative of deficient DNA repair - have been analysed at the cellular level. The results show that: (1) The effect of both mutations on chromosome stability is cell autonomous. (2) After 1000 r of X-irradiation practically all the cells homozygous for mei-41 disappear while about one-third of the cells homozygous for mei-9a survive the irradiation. The possibility of using these mutants as tools to approach developmental problems is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Baker, B. S., Boyd, J. B., Carpenter, A. T. C., Green, M. M., Nguyen, T. D., Ripoll, P. & Smith, P. D. (1976). Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proceedings of the National Academy of Sciences U.S.A. 73, 41404144.CrossRefGoogle ScholarPubMed
Baker, B. S. & Carpenter, A. T. C. (1972). Genetic analysis of sex chromosomal meiotic mutants in Drosophila melanogaster. Genetics 71, 255268.Google Scholar
Baker, B. S., Carpenter, A. T. C. & Ripoll, P. (1978). The utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaster. Genetics 90, 531578.CrossRefGoogle ScholarPubMed
Boyd, J. B., Golino, M. D., Nguyen, T. D. & Green, M. M. (1976 a). Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics 84, 485506.CrossRefGoogle ScholarPubMed
Boyd, J. B., Golino, M. D. & Setlow, R. B. (1976 b). The mei-9a mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics 84, 527544.CrossRefGoogle Scholar
Boyd, J. B. & Setlow, R. B. (1976). Characterization of post replication repair in mutagensensitive strains of Drosophila melanogaster. Genetics 84, 507526.CrossRefGoogle Scholar
Bryant, P. J. (1970). Cell lineage relationships in imaginal wing disk of Drosophila melanogaster. Developmental Biology 22, 389411.CrossRefGoogle Scholar
Garcia-Bellido, A. & Merrian, J. R. (1971 a). Parameters of wing imaginal disc development of Drosophila melanogaster. Developmental Biology 24, 6187.CrossRefGoogle ScholarPubMed
Garcia-Bellido, A. & Merrian, J. R. (1971 b). Genetic analysis of cell heredity in imaginal discs of Drosophila melanogaster. Proceedings of the National Academy of Sciences U.S.A. 68, 22222226.CrossRefGoogle ScholarPubMed
Garcia-Bellido, A., Ripoll, P. & Morata, G. (1976). Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila. Developmental Biology 48, 132147.CrossRefGoogle ScholarPubMed
Gatti, M. (1979). Genetic control of chromosomal breakage and rejoining in Drosophila melanogaster: Spontaneous chromosome aberrations in X-linked mutants defective in DNA metabolism. Proceedings of the National Academy of Sciences U.S.A. 76, 13771381.Google Scholar
Kennison, J. A. & Ripoll, P. (1981). Spontaneous mitotic recombination and evidence for an X-ray inducible system for the repair of DNA damage in Drosophila melanogaster. Genetics 98, 91103.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute of Washington Publication, no 627.Google Scholar
Nguyen, T. D., Green, M. M. & Boyd, J. B. (1978). Isolation of two X-linked mutants in Drosophila melanogaster which are sensitive to X-rays. Mutation Research 49, 139143.CrossRefGoogle Scholar
Postlethwait, J. H. (1978). Development of cuticular patterns in the legs of a cell lethal mutant of Drosophila melanogaster. Wilhelm Roux's Archives 185, 3757.CrossRefGoogle Scholar
Ripoll, P. (1977). Behaviour of somatic cells homozygous for zygotic lethals in Drosophila melanogaster. Genetics 86, 357376.CrossRefGoogle ScholarPubMed
Russell, M. (1974). Pattern formation in the imaginal discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Developmental Biology 40, 2439.Google Scholar
Simpson, P. & Schneiderman, H. A. (1975). Isolation of temperature-sensitive mutations blocking clone development in Drosophila melanogaster, and the effects of a temperature-sensitive cell lethal mutation on pattern formation in imaginal discs. Wilhelm Roux's Archives 178, 247275.CrossRefGoogle Scholar
Smith, P. D. (1973). Mutagen sensitivity of Drosophila melanogaster. I. Isolation and preliminary characterization of a methyl methanesulfonate-sensitive strain. Mutation Research 20, 215220.Google Scholar
Smith, P. D. (1976). Mutagen sensitivity of Drosophila melanogaster. III. X-linked loci governing sensitivity to methyl methanesulfonate. Molecular and General Genetics 149, 7385.CrossRefGoogle ScholarPubMed
Smith, P. D. & Shear, C. G. (1974). X-ray and ultraviolet light sensitivities of a methyl methanesulfonate-sensitive strain of Drosophila melanogaster. In Mechanisms in Recombination (ed Grell, R. F.), pp. 399403. New York: Plenum Press.CrossRefGoogle Scholar
Stern, C. (1936). Somatic crossing-over and segregation in Drosophila melanogaster. Genetic 21, 625730.CrossRefGoogle ScholarPubMed