Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T20:43:45.405Z Has data issue: false hasContentIssue false

Can segregation distortion influence gametic disequilibrium?

Published online by Cambridge University Press:  14 April 2009

Philip W. Hedrick
Affiliation:
Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are a number of reports of gametic disequilibrium between alleles causing segregation distortion (e.g. t alleles in M. musculus and SD alleles in D. melanogaster) and linked loci. These observations have resulted in the conclusion by some researchers that segregation distortion may cause gametic disequilibrium. In this manuscript I have shown that (1) segregation distortion cannot generate gametic disequilibrium de novo and (2) because segregation distortion results in an excess of heterozygotes, the rate of decay of disequilibrium is faster than if segregation distortion were absent. Other factors, such as mutation or selection, appear to generate the observed disequilibrium, and extremely low recombination appears important in retarding its decay.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Alper, C. A., Awdeh, Z. L., Raum, D. D. & Yunis, E. J. (1985). Possible human analogs of the murine T/t complex. Experimental and Clinical Immunogenetics 2, 125136.Google ScholarPubMed
Awdeh, Z. L., Raum, D., Yunis, E. J. & Alper, C. A. (1983). Extended HLA/complement allele haplotypes: Evidence for T/t-like complex in man. Proceedings of the National Academy of Sciences USA 80, 259263.CrossRefGoogle Scholar
Bruck, D. (1957). Male segregation ratio advantage as a factor in maintaining lethal alleles in wild populations of house mice. Proceedings of the National Academy of Sciences USA 43, 152158.CrossRefGoogle ScholarPubMed
Figueroa, F., Golubić, M., Nizetic, D. & Klein, J. (1985). Evolution of mouse major histocompatibility complex genes borne byt chromosomes. Proceedings of the National Academy of Sciences USA 82, 28192823.CrossRefGoogle Scholar
Gachelin, G., Delarbre, C. & Morita, T. (1986). Are the major histocompatibility complexes of the mouse t-haplotypes distinctive gene pools? In Evolutionary Processes and Theory (ed. Karlin, S. and Nevo, E.), pp. 115142. New York: Academic Press.CrossRefGoogle Scholar
Goodfellow, P. N. & Andrews, P. W. (1983). Is there a human T/t locus? Nature 302, 657658.CrossRefGoogle Scholar
Hartl, D. L. (1977). Mechanism of a case of genetic coadaptation in populations of Drosophila melanogasler. Proceedings of the National Academy of Sciences USA 74, 324328.CrossRefGoogle Scholar
Hedrick, P. W., Jain, S. & Holden, L. (1978). Multilocus systems in evolution. Evolutionary Biology 11, 101182.Google Scholar
Hedrick, P. W. & Holden, L. (1979). Hitching: an alternative to coadaptation for the barley and slender wild oat examples. Heredity 43, 7986.CrossRefGoogle Scholar
Hedrick, P. W. (1980 a). The establishment of chromosomal variants. Evolution 35 322332.CrossRefGoogle Scholar
Hedrick, P. W. (1980 b). Hitchhiking: a comparison of linkage and partial selfing. Genetics 94, 791808.CrossRefGoogle ScholarPubMed
Hedrick, P. W. (1983). Genetics of Populations. Boston: Jones and Bartlett.Google Scholar
Hedrick, P. W. and Thomson, G. (1988). Maternal-fetal interactions and the maintenance of histocompatibility polymorphism. Genetics 119, 205212.CrossRefGoogle Scholar
Klitz, W., Lo, S. K., Neugebauer, M., Baur, M. P., Albert, E. D. & Thomson, G. (1987). A comprehensive search for segregation distortion in HLA. Human Immunology. 18, 163180.CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1964). The interaction of selection and linkage.I. General considerations; heterotic models. Genetics 46, 4967.CrossRefGoogle Scholar
Lewontin, R. C. (1968). The effect of differential viability on the population dynamics of t alleles in the house mouse. Evolution 22, 262273.CrossRefGoogle ScholarPubMed
Nadeau, J. H. (1983). Absence of detectable gametic disequilibrium between the t-complex and linked allozyme-encoding loci in house mice. Genetical Research 42, 323333.CrossRefGoogle ScholarPubMed
Nadeau, J. H. (1986). A glyoxalase-1 variant associated with the T-complex in house mice. Genetics 113, 9199.CrossRefGoogle ScholarPubMed
Nadeau, J. H., Phillips, S. J. & Egorov, I. K. (1985). Recombination between the t 6 compex and linked loci in the house mouse. Genetical Research. 45, 251264.CrossRefGoogle Scholar
Purser, A. F. (1966). Increase in heterozygote frequency with differential fertility. Heredity 21, 322327.CrossRefGoogle ScholarPubMed
Robertson, A. (1965). The interpretation of genotypic ratios in domestic animal populations. Animal Production 7, 319324.Google Scholar
Silver, L. M. (1985). Mouse t haplotypes. Annual Review of Genetics 19, 179208.CrossRefGoogle ScholarPubMed
Thomson, G. (1977). The effect of a selected locus on linked neutral loci. Genetics 85, 783788.CrossRefGoogle ScholarPubMed
Thomson, G. & Klitz, W. (1987). Disequilibrium pattern analysis. I. Theory. Genetics 116, 625632.CrossRefGoogle ScholarPubMed