Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T06:54:17.814Z Has data issue: false hasContentIssue false

Breeding Systems in tetraploid Rubus species

Published online by Cambridge University Press:  14 April 2009

G. J. Dowrick
Affiliation:
Wye College, University of London, nr. Ashford, Kent

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The breeding behaviour of the three tetraploid Rubus species R. caesius, R. calvatus and R. laciniatus (2n = 28) has been investigated.

2. Megaspore mother cells of all three species always undergo a normal meiosis and embryo-sac formation is of the Polygonum type. Egg cells have fourteen chromosomes.

3. There is no evidence for the production of either aposporic or diplosporic embryo-sacs as has previously been assumed.

4. The proportion of sexual and apomictic progeny differs in the three species and, in R. laciniatus, varies according to the chromosome number of the pollinating parent.

5. The apomictic progeny are produced by diploidization of the reduced egg cells. These diploidized egg cells can subsequently be fertilized in R. laciniatus.

6. The versatility in the breeding behaviour of these species is explained on the basis that only one type of embryo-sac is formed and that the developmental behaviour of the egg cell is conditioned by the chromosome number of the pollinating parent. Apomixis in these species is not a consequence of a breakdown of meiosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Aalders, L. E. (1964). Production of Maternal-type Parents through crosses to Apomictic Species. Nature, Lond. 204, 101–2.Google Scholar
Crane, M. B. & Thomas, P. T. (1939). Reproductive versatility in Rubus. Proc. 7th Int. Gen. Cong. Edin. 91.Google Scholar
Christen, H. R. (1950). Untersuchungen uber die Embryologie pseudogamer und sexueller Rubusarten. Ber. schweiz. hot. Ges. 60, 153–98.Google Scholar
Dowrick, G. J. (1959). Abnormal Gametogenesis and Embryo Abortion in the Pear variety Beurré Bedford (Pyrus communis). Z. indukt. Abstamm.- u VererbLehre. 89, 8093.Google Scholar
Einset, J. (1951). Apomixis in American polyploid blackberries. Am. J. Bot. 38, 768–72.CrossRefGoogle Scholar
Einset, J. (1947). Chromosome studies in Rubus. Gentes Herb. 7, 181–92.Google Scholar
Ernst, A. (1951). ‘Natural Hybrids’ nach interspezifischen Bestäubungen in der Gattung Primula. Arch. Julius Klaus-Stifl Vererb-Forsch 25, 135236.Google Scholar
Gustafsson, A. (1943). The genesis of the European blackberry flora. Acta. Univ. lund. 54, 1199.Google Scholar
Gustafsson, A. (1946). Apomixis in Higher plants. Part 1. The mechanism of apomixis. Acta. Univ. lund. N.F. Avid. 42.Google Scholar
Jeffrey, E. C. (1948). Hormones in relation to parthenogenesis. Genetics 33, 615.Google Scholar
Lidforss, B. (1914). Resumé seiner Arbeiten über Rubus. Ind. Abst. Vererb. 12, 113.Google Scholar
Markarian, D. & Olmo, H. P. (1959). Cytogenetics of Rubus. 1. Reproductive behaviour of R. procerus Muell. J. Hered. 50, 131–36.CrossRefGoogle Scholar
Pratt, C. & Einset, J. (1955). Development of the embryo-sac in some American blackberries. Am. J. Bot., 42, 637–45.CrossRefGoogle Scholar
Pratt, C., Einset, J. & Clausen, R. T. (1958). Embryology, breeding behaviour and morphological characteristics of apomictic triploid Rubus idaeus L. Bull. Torrey. bot. Club, 85, 242–54.CrossRefGoogle Scholar
Redinger, K. (1938). Uber die Entslehung diploider Embryonen aus unblfruchteten, mit gattungsfrundum Pollen bestaubten. Samenaulagen von Petunia nyctaginifiora. Biol. Zbl. 58, 142–51.Google Scholar
Thomas, P. T. (1940). Reproductive versatility in Rubus II, The chromosomes and development. J. Genet. 40, 119–28.CrossRefGoogle Scholar