Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T23:59:50.388Z Has data issue: false hasContentIssue false

Biochemical characterization and genetic mapping of purine genes in Micrococcus luteus

Published online by Cambridge University Press:  14 April 2009

Nirupama Mohapatra
Affiliation:
Department of Genetics, North Carolina State University, Raleigh, North Carolina 27607
Wesley E. Kloos
Affiliation:
Department of Genetics, North Carolina State University, Raleigh, North Carolina 27607
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Purine auxotrophs of Micrococcus luteus were induced by N-methyl-N′-nitro-N-nitrosoguanidine. They were biochemically characterized by growth stimulation with CO2-enriched air and purine intermediates and by the Bratton-Marshall test that is used to detect accumulated diazotizable amines. The mutants were divided into four classes: pur (EC), purH, purJ, and Pur. The pur(EC) class was further subdivided into purE and purC by results of crossing all the pur(EC) mutants with a known purE reference strain (ATCC 27141). Mutants which were not linked to the reference purE marker were considered to be purC. Genetic mapping was accomplished by using two-point reciprocal transformation crosses. The result of this study indicates that purJ mutants may be loosely linked to purE and purC, and purH mutants are not linked to purE, purC or purJ.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Balis, M. E., Brooke, M. S., Brown, G. B. & Magasanik, B. (1956). The utilization of purines by purineless mutants of Aerobacter aerogenes. Journal of Biological Chemistry 219, 917926.CrossRefGoogle ScholarPubMed
Baxter-Gabbard, K. L. & Pattee, P. A. (1970). Purine biosynthesis in Staphylococcus aureus. Archive of Mikrobiology 71, 4048.CrossRefGoogle ScholarPubMed
Buchanan, J. M. & Hartman, S. C. (1959). Enzymatic reactions in the synthesis of the purines. Advances in Enzymology 21, 199261.Google Scholar
Chapman, L. F. & Nester, E. W. (1969). Gene-enzyme relationship in histidine biosynthesis in Bacillus subtilis. Journal of Bacteriology 97, 14441448.CrossRefGoogle ScholarPubMed
Charles, H. P. (1962). Response of Neurospora mutants to carbon dioxide. Nature 195, 359360.CrossRefGoogle ScholarPubMed
Demerec, M. (1964). Clustering of functionally related genes in Salmonella typhimurium. Proceedings of the National Academy of Sciences of the U.S.A. 51, 19571967.CrossRefGoogle ScholarPubMed
De Serres, F. J. (1966). Carbon dioxide stimulation of the ad-3 mutants of Neurospora crassa. Mutation Research 3, 420425.CrossRefGoogle ScholarPubMed
Flaks, J. G. & Lukens, L. N. (1963). The enzymes of purine nucleotide synthesis de novo. In Methods in Enzymology, vol. vi (ed. Colowick, S. P. and Kaplan, N. O.), p. 527. New York: Academic Press.Google Scholar
Gollub, E. G. & Gots, J. S. (1959). Purine metabolism in bacteria. VI. Accumulations by mutants lacking adenylosuccinase. Journal of Bacteriology 78, 320325.CrossRefGoogle ScholarPubMed
Gots, J. S., Benson, C. E. & Shumas, S. R. (1972). Genetic separation of hypoxanthine and guanine-xanthine phosphoribosyl transferase activities by deletion mutants in Salmonella typhimurium. Journal of Bacteriology 112, 910916.CrossRefGoogle Scholar
Gots, J. S., Dalal, F. R. & Shumas, S. R. (1969). Genetic separation of the inosinic acid cyclohydrolase-transformylase complex of Salmonella typhimurium. Journal of Bacteriology 99, 441449.CrossRefGoogle Scholar
Gots, J. S. & Gollub, E. G. (1957). Sequential blockage in adenine biosynthesis by genetic loss of a bifunctional deacylase. Proceedings of National Academy of Sciences of U.S.A. 43, 826834.CrossRefGoogle Scholar
Hartman, P. E., Loper, J. C. & Serman, D. (1960). Fine structure mapping by complete transduction between histidine-requiring Salmonella mutants. Journal of General Microbiology 22, 323353.CrossRefGoogle ScholarPubMed
Kloos, W. E. (1969 a). Factors affecting transformation of Micrococcus lysodeikticus. Journal of Bacteriology 98, 13971399.CrossRefGoogle ScholarPubMed
Kloos, W. E. (1969 b). Transformation of Micrococcus lysodeikticus by various members of the family Micrococcaceae. Journal of General Microbiology 59, 247255.Google Scholar
Kloos, W. E. & Rose, N. E. (1970). Transformation mapping of the tryptophan loci in Micrococcus luteus. Genetics 66, 595605.CrossRefGoogle ScholarPubMed
Magasanik, B. & Brooke, M. S. (1954). The accumulation of xanthosine by a guanine-less mutant of Aerobacter aerogenes. Journal of Biological Chemistry 206, 8387.CrossRefGoogle ScholarPubMed
Magasanik, B. & Karibian, D. (1960). Purine nucleotide cycles and their metabolic role. Journal of Biological Chemistry 235, 26722681.CrossRefGoogle ScholarPubMed
Naylor, H. B. & Burgi, E. (1965). Observation on abortive infection of Micrococcus lysodeikticus with bacteriophage. Virology 2, 577593.CrossRefGoogle Scholar
Sanderson, K. E. (1967). Revised linkage map of Salmonella typhimurium. Bacteriological Review 31, 354372.CrossRefGoogle ScholarPubMed
Schulman, M. P. (1961). In Metabolic pathways, vol. II b, p. 389. New York: Academic Press.CrossRefGoogle Scholar
Stouthamer, A. H., De Haan, P. G. & Nijkamp, H. V. (1965). Mapping of purine markers in Escherichia coli k-12. Genetical Research 6, 442453.CrossRefGoogle ScholarPubMed
Taylor, A. L. & Trotter, C. D. (1967). Revised linkage map of Escherichia coli. Bacteriological Review 31, 332353.CrossRefGoogle ScholarPubMed
Tritz, G. J., Matney, T. S., Chandler, J. L. R. & Gholson, R. K. (1970). Identification of the pur I locus in Escherichia coli K-12. Journal of Bacteriology 102, 881883.CrossRefGoogle Scholar
Vogel, H. J. & Bonner, D. M. (1956). Acetylornithinase of Escherichia coli, partial purification and some properties. Journal of Biological Chemistry 218, 97106.CrossRefGoogle ScholarPubMed
Yura, T. (1956). Evidence of non-identical alleles in purine-requiring mutants of S. typhimurium. In Genetic Studies with Bacteria. Publication of Carnegie Institute, 612, 6375.Google Scholar