Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T10:07:41.379Z Has data issue: false hasContentIssue false

Aromatic amino acid biosynthesis and para-fluorophenylalanine resistance in Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

Umakant Sinha
Affiliation:
Department of Genetics, University of Glasgow
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Five additional phenylalanine (PHE)-requiring mutants have been isolated but they do not add to the number of loci already known which have been designated phenA (phen2 and its alleles) and phenB (phen6).

2. Two pathways for tyrosine (TYR) synthesis in A. nidulans have been proposed: the well-known one by the transamination of p-hydroxyphenylpyruvic acid and an alternative one, as in animals, by the hydroxylation of PHE.

3. Ten allelic partial TYR-requiring mutants (tyrA), presumably blocked in the transamination pathway, have been isolated after N-methyl-N′-nitro-N-nitrosoguanidine (NTG) treatment of bil;phenA3 conidia.

4. Four partial TYR requirers (at another locus—tyrB) have been isolated after NTG treatment of tyr A7, bi1 conidia. They are presumably blocked in an alternative pathway for TYR synthesis, i.e. in the PHE-hydroxylation pathway.

5. tyrA mutants have been found to be p-fluorophenylalanine (FPA)-resistant and allelic to mutants at the fpA locus. tyrB mutants have been found to be very leaky and FPA-sensitive. tyrA;tyrB double mutants have been found to be exacting TYR requirers.

6. Mutants at loci fpA (tyrA) and fpE (anthranilic acid-requiring) have been interpreted to be p-fluorophenylalanine-resistant due to an oversynthesis of PHE.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Adelberg, E. A. (1958). Selection of bacterial mutants which excrete antagonists of anti-metabolites. J. Bact. 76, 326.CrossRefGoogle Scholar
Barratt, R. W., Fuller, R. C. & Tanenbaum, S. W. (1956). Amino acid interrelationships in certain leucine- and aromatic-requiring strains of Neurospora crassa. J. Bact. 71, 108114.CrossRefGoogle ScholarPubMed
Beadle, G. W. (1945). Biochemical genetics. Chem. Rev. 37, 1596.CrossRefGoogle Scholar
Broquist, H. P. & Trupin, J. S. (1966). Amino acid metabolism. A. Rev. Biochem. 35, 231274.CrossRefGoogle Scholar
Calvori, C. & Morpurgo, G. (1966). Analysis of induced mutations in Aspergillus nidulans. I—U.V. and HNO2 induced mutations. Mut. Res. 3, 145151.CrossRefGoogle Scholar
Clutterbuck, A. J. & Sinha, U. K. (1966). N-methyl.N′-nitro-N-nitrosoguanidine (NTG) as a mutagen for Aspergillus nidulans. Aspergillus News Letter. 7, 1213.Google Scholar
Ezekiel, D. H. (1965). False feedback inhibition of aromatic amino acid biosynthesis by β-2-thienyl-alanine. Biochem. biophys. Acta. 95, 5462.Google Scholar
Guroff, G. & Ito, T. (1963). Induced, soluble phenylalanine hydroxylase from Pseudomonas sp. grown on phenylalanine or tyrosine. Biochim. biophys. Acta. 77, 159161.CrossRefGoogle ScholarPubMed
Huang, H. T. (1964). Microbial production of amino acids. Prog. ind. Microbiol. 5, 5592. (Hockenhull, D. J. D., ed.) London: A Heywood book.Google Scholar
Jensen, R. A. & Nester, E. W. (1965). The regulatory significance of intermediary metabolites: control of aromatic acid biosynthesis by feedback inhibition in Bacillus subtilis. J. molec. Bid. 12, 468482.CrossRefGoogle ScholarPubMed
Käfer, E. (1958). An 8-chromosome map of Aspergillus nidulans. Adv. Genet. 9, 105145.CrossRefGoogle ScholarPubMed
Kaufman, S. (1963). The structure of the phenylalanine-hydroxylation cofactor. Proc. natn. Acad. Sci. U.S.A. 50, 10851093.CrossRefGoogle ScholarPubMed
Mackintosh, M. E. & Pritchard, R. H. (1963). The production and replica plating of micro colonies of A. nidulans. Genet. Res. 4, 320322.CrossRefGoogle Scholar
McCully, K. S. (1964). Unpublished results.Google Scholar
McCully, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genet Res. 6, 352359.CrossRefGoogle ScholarPubMed
Meister, A. (1965). Biochemistry of the Amino Acids, 2nd ed., Vols. I and II. New York and London: Academic Press.Google Scholar
Mitoma, C. & Leeper, L. C. (1954). Enzymatic conversion of phenylalanine to tyrosine. Fedn. Proc. Fedn. Am. Socs exp. Biol. 13, 266.Google Scholar
Morpurgo, G. (1962). Resistance to p-fluorophenylalanine. Aspergillus News Letter, 2, 11.Google Scholar
Pontecorvo, G. (1949). Auxanographic techniques in biochemical genetics. J. gen. Microbiol. 3, 122126.CrossRefGoogle ScholarPubMed
Pontecorvo, G. & Käfer, E. (1958). Genetic analysis based on mitotic recombination. Adv. Genet. 9, 71104.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Adv. Genet. 5, 141238.CrossRefGoogle ScholarPubMed
Previc, E. & Binkley, S. (1964 a). Slow exponential growth of Escherichia coli in presence of p-fluorophenylalanine. Effect of the analogue on aromatic biosynthesis. Biochim. biophys. Acta, 87, 277290.Google Scholar
Previc, E. & Binkley, S. (1964 b). Repression and inhibition of 3-deoxy-D-arabinoheptulosomic acid 7-phosphate synthetase by para-fluorophenylalanine in Escherichia coli. Biochem. biophys. Res. Commun. 16, 162166.CrossRefGoogle Scholar
Roberts, C. F. (1967). Complementation analysis of the tryptophan pathway in Aspergillus nidulans. Genetics. 55, 233239.CrossRefGoogle ScholarPubMed
Roper, J. A. (1952). Production of heterozygous diploids in filamentous fungi. Experientia, 8, 1415.CrossRefGoogle ScholarPubMed
Rudman, D. & Meister, A. (1953). Transamination in Escherichia coli. J. biol. Chem. 200, 591604.CrossRefGoogle ScholarPubMed
Scherr, G. H. & Rafelson, M. E. (1962). The directed isolation of mutants producing increased amounts of metabolites. J. appl. Bact. 25, 187194.CrossRefGoogle Scholar
Udenfriend, S. & Cooper, J. R. (1952). The enzymatic conversion of phenylalanine to tyrosine. J. biol. Chem. 194, 503511.CrossRefGoogle Scholar
Warr, J. R. & Roper, J. A. (1965). Resistance to various inhibitors in Aspergillus nidulans. J. gen. Microbiol. 40, 273281.CrossRefGoogle ScholarPubMed