Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T22:43:36.084Z Has data issue: false hasContentIssue false

An assessment of the homoeology of six Agropyron intermedium chromosomes added to wheat

Published online by Cambridge University Press:  14 April 2009

B. P. Forster
Affiliation:
AFRC Institute of Plant Science Research, Plant Breeding Institute, Marts Lane, Trumpington, Cambridge, EnglandCB2 2LQ.
S. M. Reader
Affiliation:
AFRC Institute of Plant Science Research, Plant Breeding Institute, Marts Lane, Trumpington, Cambridge, EnglandCB2 2LQ.
S. A. Forsyth
Affiliation:
AFRC Institute of Plant Science Research, Plant Breeding Institute, Marts Lane, Trumpington, Cambridge, EnglandCB2 2LQ.
R. M. D. Koebner
Affiliation:
AFRC Institute of Plant Science Research, Plant Breeding Institute, Marts Lane, Trumpington, Cambridge, EnglandCB2 2LQ.
T. E. Miller
Affiliation:
AFRC Institute of Plant Science Research, Plant Breeding Institute, Marts Lane, Trumpington, Cambridge, EnglandCB2 2LQ.
M. D. Gale
Affiliation:
AFRC Institute of Plant Science Research, Plant Breeding Institute, Marts Lane, Trumpington, Cambridge, EnglandCB2 2LQ.
Y. Cauderon
Affiliation:
I.N.R.A. Station de Génétique et d'Amélioration des Plantes, Etoile de Choisy-Route de Saint-Cyr, 7800 Versailles, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Six wheat/Agropyron intermedium addition lines are described on the basis of their phenotype and biochemical markers. An assessment of homoeology of each addition chromosome is made. Chromosome morphology, plant phenotype, isozyme and protein studies are compared with similar data for other wheat/alien addition lines and other members of the Triticeae. These comparisons give consistent results and it is concluded that addition lines L1, L2, L3, L4, L5 and L7 carry Agropyron chromosomes of homoeologous groups 7, 3, 1, 4, 5 and 6 respectively. This agrees with previously published work with one exception: the L5 chromosome belongs to homoeologous group 5 and not group 2 as proposed by Figueiras et al. (1986).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Ainsworth, C. C., Gale, M. D. & Baird, S. (1983). The genetics of β-amylase isozymes in wheat. I. Allelic variation among hexaploid varieties and interchromosomal gene locations. Theoretical and Applied Genetics 66, 3949.Google Scholar
Ainsworth, C. C., Gale, M. D. & Baird, S. (1984).The genetic control of grain esterases in hexaploid wheat. Theoretical and Applied Genetics 68, 219226.CrossRefGoogle ScholarPubMed
Ainsworth, C. C., Miller, T. E. & Gale, M. D. (1986). The genetic control of grain esterases in hexaploid wheat. 2. Homoeologous loci in related species. Theoretical and Applied Genetics 72, 219225.CrossRefGoogle ScholarPubMed
Ainsworth, C. C., Miller, T. E. & Gale, M. D. (1987). α-amylase and β-amylase homoeoloci in species related to wheat. Genetical Research 49, 93103.Google Scholar
Benito, C., Figueiras, A. M. & González-Jaén, M. T. (1984). Phosphoglucomutase – a biochemical marker for group 4 chromosomes in the Triticinae. Theoretical and Applied Genetics 68, 555557.CrossRefGoogle Scholar
Bushuk, W. & Zillman, R. R. (1978). Wheat cultivar identification by gliadin electrophoresis. I. Apparatus, method and nomenclature. Canadian Journal of Plant Science 58, 505515.CrossRefGoogle Scholar
Cauderon, Y. (1958). Étude cytogénétique des Agropyrons français et de leurs hybrides avec les Blés. Annales de l'Amélioration des Plantes 8, 389567.Google Scholar
Cauderon, Y. (1966). Étude cytogénétique de l'évolution du matérial issu de croisement entre Triticum aestivum et Agropyron intermedium. Annales de l'Amélioration des Plantes 16, 4370.Google Scholar
Cauderon, Y. (1979). Use of Agropyron species for wheat improvement. Proceedings of Conference on Broadening the Genetic Base in Crops,Wageningen, 1978. Pudoc, Wageningen, 1979.Google Scholar
Cauderon, Y., Autran, J. C., Joudrier, P. H. & Kobrehel, K. (1978). Identification de chromosomes d'Agropyron inter-medium impliqués dans la synthèse des gliadins, des β-amylase et des peroxidase à l'aide de lignées d'addition Blé × Agropyron. Annales de l'Amélioration des Plantes 28, 257267.Google Scholar
Cauderon, Y. & Rhind, J. M. (1976). The effect on wheat of an Agropyron chromosome carrying stripe rust resistance. Annales de l'Amélioration des Plantes 26, 745749.Google Scholar
Cauderon, Y., Saigne, B. & Dauge, M. (1973). The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. Proceedings of the 4th International Wheat Genetics Symposium,Columbia, Missouri, USA, pp. 401407.Google Scholar
Chojecki, A. J. S. & Gale, M. D. (1982). Genetic control of glucose phosphate isomerase in wheat and related species. Heredity 49, 337347.Google Scholar
Dewey, D. R. (1984). The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In Gene Manipulation in Plant Improvement. (ed. Gustafson, J. P.), pp. 209280. New York: Plenum.Google Scholar
Figueiras, A. M., González-Jáen, M. T. & Benito, C. (1986). Biochemical evidence of homoeology between Triticum aestivum and Agropyron intermedium chromosomes. Theoretical and Applied Genetics 72, 826832.Google Scholar
Gale, M. D., Law, C. N., Chojecki, A. J. & Kempton, R. A. (1983). Genetic control of α-amylase production in wheat. Theoretical and Applied Genetics 64, 309316.Google Scholar
Hart, G. E. (1973). Homoeologous gene evolution in hexaploid wheat. Proceedings of the 4th International Wheat Genetics Symposium,University of Columbia,Missouri, pp. 805810.Google Scholar
Hsam, S. L. K. & Zeller, J. F. (1982). Relationships of Agropyron intermedium chromosomes determined by chromosome pairing and alcohol dehydrogenase isozymes in common wheat background. Theoretical and Applied Genetics 63, 213217.Google Scholar
Jackson, E. A., Holt, L. M. & Payne, P. I. (1983). Characterisation of high molecular weight gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localisation of their controlling genes. Theoretical and Applied Genetics 66, 2937.Google Scholar
Koebner, R. M. D. (1987). Genetic control of a novel series of trypsin inhibitors in wheat and its relatives. Biochemical Genetics (In the Press.)CrossRefGoogle Scholar
McIntosh, R. A. (1985). A catalogue of gene symbols for wheat. (1983 edition). Proceedings of the 6th International Wheat Genetics Symposium,Kyoto,University of Kyoto, Japan, pp. 1197–254.Google Scholar
Miller, T. E. (1984). The homoeologous relationship between the chromosomes of rye and wheat. Current status. Canadian Journal of Genetics and Cytology 26, 578589.CrossRefGoogle Scholar
Miller, T. E., Hutchinson, J. & Reader, S. M. (1983). The identification of the nucleolus organiser chromosomes of diploid wheat. Theoretical and Applied Genetics 65, 145147.Google Scholar
Miller, T. E. & Reader, S. M. (1987). A guide to the homoeology of chromosomes within the Triticeae. Theoretical and Applied Genetics (In the Press.)Google Scholar
Payne, P. I., Holt, L. M., Burgess, S. R. & Shewry, P. R. (1986). Characterisation by two-dimensional gel electrophoresis of the protein components of protein bodies isolated from the developing endosperm of wheat (Triticum aestivum). Journal of Cereal Science 4, 217223.Google Scholar
Payne, P. I., Holt, L. M., Jarvis, M. G. & Jackson, E. A. (1985). Two-dimensional fractionation of the endosperm proteins of bread wheat (Triticum aestivum): Biochemical and genetic studies. Cereal Chemistry 62, (5), 319326.Google Scholar
Payne, P. I., Holt, L. M., Reader, S. M. & Miller, T. E. (1986). Chromosomal location of genes coding for endosperm proteins of Hordeum chilense, determined by two-dimensional electrophoresis of wheat – H. chilense chromosome addition lines. Biochemical Genetics 25, 5365.CrossRefGoogle Scholar
Payne, P. I., Law, C. N. & Mudd, E. E. (1980). Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics 58, 113120.Google Scholar
Pietro, M. E. & Hart, G. E. (1985). The genetic control of triosephosphate isomerase of hexaploid wheat and other Triticeae species. Genetical Research 45, 127142.Google Scholar