Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T17:54:48.108Z Has data issue: false hasContentIssue false

α-Amylase and β-amylase homoeoloci in species related to wheat

Published online by Cambridge University Press:  14 April 2009

C. C. Ainsworth
Affiliation:
Plant Breeding Institute, Maris Lane, Trumpington, Cambridge, CB2 2LQ, UK
T. E. Miller
Affiliation:
Plant Breeding Institute, Maris Lane, Trumpington, Cambridge, CB2 2LQ, UK
M. D. Gale*
Affiliation:
Plant Breeding Institute, Maris Lane, Trumpington, Cambridge, CB2 2LQ, UK
*
Corresponding authors.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A study of α-amylase isozyme patterns from gibberellin-induced endosperms of wheat-alien genotypes (amphiploid, addition and substitution lines) resolved by flat-bed isoelectric focusing identified homoeoloci for α-Amy-1 (malt α-AMY-1 genes) on chromosomes 6H of Hordeum vulgare, 6RL of Secale cereale, 6Rm of S. montanum and 6E of Agropyron elongatum. Homoeoloci for α-Amy-2 (green α-AMY-2 genes) were identified on chromosomes 7HchL of Hordeum chilense, 7RL of Secale cereale, 7Sb of Aegilops bicornis, 7U of Ae. umbellulata and 7EL of Agropyron elongatum. Analysis of mature grain β-amylase identified β-Amy-1 loci on chromosomes 4H of H. vulgare, 4Hch of H. chilense, 4S1 of Ae. sharonensis and Ae. longissima and β-Amy-2 loci on chromosomes 5RL of S. cereale and 5U of Ae. umbellulata. These gene locations provide further evidence for the homoeology of the alien chromosomes with wheat and for the conservation of gene synteny among wheat and its relatives.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Ainsworth, C. C., Doherty, P., Edwards, K. G. K., Martienssen, R. A. & Gale, M. D. (1985). Allelic variation at α-amylase loci in hexaploid wheat. Theoretical and Applied Genetics 70, 400406.CrossRefGoogle ScholarPubMed
Ainsworth, C. C., Gale, M. D. & Baird, S. (1983). The genetics of β-amylase isozymes as wheat. I. Allelic variation among hexaploid varieties and intra-chromosomal gene locations. Theoretical and Applied Genetics 66, 3949.CrossRefGoogle Scholar
Ainsworth, C. C., Gale, M. D. & Miller, T. E. (1986). The genetic control of grain esterases in hexaploid wheat. II. Homoeologous loci in related species. Theoretical and Applied Genetics 72, 219225.CrossRefGoogle Scholar
Artemova, N. V. (1982). Chromosomal control of the isoenzymes of alcohol dehydrogenase, esterase and amylase in different rye varieties. Genetica 18, 661667.Google Scholar
Athwal, R. S. & Kimber, G. (1972). The pairing of an alien chromosome with homoeologous chromosomes of wheat. Canadian Journal of Genetics and Cytology 14, 325333.CrossRefGoogle Scholar
Bernard, M., Autran, J.-C. & Joudrier, P. (1977). Possibilities d'identification de certains chromosomes de seigle a l'aide de marqueurs biochimiques. Annales Amèlioration des Plantes 27, 355362.Google Scholar
Bielig, L. M. & Driscoll, C. J. (1970). Substitution of rye chromosome 5RL for chromosome 5B of wheat and its effect on chromosome pairing. Genetics 65, 241247.CrossRefGoogle Scholar
Brown, A. H. D. & Jacobsen, J. V. (1982). Genetic basis and natural variation of α-amylase isozymes in barley. Genetical Research 40, 315324.CrossRefGoogle Scholar
Chapman, V. & Miller, T. E. (1978). The amphiploid of Hordeum chilense × Triticum aestivum. Cereal Research Communications 6, 351352.Google Scholar
Chapman, V. & Riley, R. (1970). Homoeologous meiotic chromosome pairing in Triticum aestivum in which chromosome 5B is replaced by an alien homoeologue. Nature 226, 376377.CrossRefGoogle ScholarPubMed
Chapman, V., Riley, R. & Miller, T. E. (1975). Alien chromosome addition and substitution lines. Annual Report of the Plant Breeding Institute, 974, pp. 125126.Google Scholar
Dabrowska, T. (1983). Studies on chromosomal location of genes involved in synthesis of beta-amylase isoenzymes in wheat kernels (Triticum aestivum L). Genetica Polonica 24, 919.Google Scholar
Daussant, J. & Renard, M. (1972). Immunological comparisons of α-amylases in developing and germinating wheat seeds. Federation of European Biochemical Societies Lelko 22, 301.CrossRefGoogle Scholar
Daussant, J. & Renard, M. (1976). Immunochemical identification of α-amylase in developing and germinating wheat seeds. Cereal Research Communications 4, 201.Google Scholar
Driscoll, C. J. & Sears, E. R. (1971). Individual addition of chromosomes of ‘Imperial’ rye to wheat. Agronomy Abstracts 1971, p. 6.Google Scholar
Dvořák, J. (1980). Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Canadian Journal of Genetics and Cytology 21, 243254.CrossRefGoogle Scholar
Dvořák, J. (1983). The origin of wheat chromosomes 4A and 4B and their genome reallocation. Canadian Journal of Genetics and Cytology 25, 210214.CrossRefGoogle Scholar
Dvořák, J. & Knott, D. R. (1974). Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Canadian Journal of Genetics and Cytology 16, 399417.CrossRefGoogle Scholar
Feldman, M. (1975). Alien addition lines of common wheat containing Triticum longissimum chromosomes. Proceedings of the Twelfth International Botany Congress, p. 506. Leningrad.Google Scholar
Gale, M. D. & Ainsworth, C. C. (1984). The relationship between α-amylase species found in developing and germinating wheat grain. Biochemical Genetics 22, 10311036.CrossRefGoogle ScholarPubMed
Gale, M. D., Law, C. N., Chojecki, A. J. & Kempton, R. A. (1983). Genetic control of α-amylase production in wheat. Theoretical and Applied Genetics 64, 309316.CrossRefGoogle ScholarPubMed
Hart, G. E. (1978). Chromosomal arm locations of Adh-R1 and an acid phosphatase structural gene in Imperial rye. Cereal Research Communications 6, 123133.Google Scholar
Hart, G. E., Islam, A. K. M. R. & Shepherd, K. W. (1980). Use of isozymes as chromosome markers in the isolation and characterisation of wheat–barley chromosome addition lines. Genetical Research 36, 311325.CrossRefGoogle Scholar
Hart, G. E. & Tuleen, N. A. (1983). Chromosomal locations of eleven Elytrigia elongata (= Agropyron elongatum) isozyme structural genes. Genetical Research 41, 181202.CrossRefGoogle Scholar
Hart, G. E. & Tuleen, N. A. (1984). Characterising and selecting alien genetic material in derivatives of wheat–alien species hybrids by analyses of isozyme variation. Proceedings of the Sixth International Wheat Genetics Symposium (ed. Sakamoto, S.), pp. 377385. Kyoto, Japan.Google Scholar
Islam, A. K. M. R., Shepherd, K. W. & Sparrow, D. H. B. (1975). Addition of individual barley chromosomes to wheat. Barley Genetics III. Proceedings of the Third International Barley Genetics Symposium, pp. 260270. Garching, W. Germany.Google Scholar
Joudrier, M. P. (1980). Contrôle génétique de la β-amylase du grain de blé tendre. Comptes Rendus Académie Science Paris 291, 477480.Google Scholar
Joudrier, M. P. & Cauderon, Y. (1976). Localisation chromosomique de gènes contrôlant la synthèse de certains constituants β-amylase du grain de blé tendre. Comptes Rendus Académie Science Paris 282, 115118.Google Scholar
Kimber, G. (1967). The addition of the chromosomes of Aegilops umbellulata to Triticum aestivum (var. Chinese Spring). Genetical Research 9, 111114.CrossRefGoogle Scholar
Kimber, G. (1968). The relationships of single alien chromosomes to the homoeologous groups of T. aestivum. Proceedings of the Third International Wheat Genetics Symposium. Australian Academy of Sciences, Canberra, pp. 8696.Google Scholar
Koebner, R. M. D. & Shepherd, K. W. (1983). Shikimate dehydrogenase – a biochemical marker for group 5 chromosomes in the Triticeae. Genetical Research 401, 208213.Google Scholar
Koller, O. L. & Zeller, F. J. (1976). The homoeologous relationship of rye chromosomes 4R and 7R with wheat chromosomes. Genetical Research 28, 177188.CrossRefGoogle Scholar
Law, C. N. (1966). The location of genetic factors affecting a quantitative character in wheat. Genetics 53, 487498.CrossRefGoogle ScholarPubMed
Lawrence, G. J. & Shepherd, K. W. (1981). Chromosomal location of genes controlling seed protein in species related to wheat. Theoretical and Applied Genetics 59, 2531.CrossRefGoogle ScholarPubMed
Miller, T. E. (1973). Alien chromosome additions and substitutions. Annual Report of the Plant Breeding Institute 1972, p. 143.Google Scholar
Miller, T. E. (1981). Chromosome pairing of intergeneric amphiploids as a means of assessing genome relationships in the Triticeae. Zeitschrift für Pflanzenzuchtung 87, 6978.Google Scholar
Miller, T. E. (1983). Preferential transmission of alien chromosomes in wheat. Proceedings of the Second Kew Chromosome Conference 1982 (ed. Brandham, P. E. & Bennett, M. D.), pp. 173182. London: George Allen and Unwin.Google Scholar
Miller, T. E. (1984). The homoeologous relationship between the chromosomes of rye and wheat. Current status. Canadian Journal of Genetics and Cytology 26, 578589.CrossRefGoogle Scholar
Miller, T. E., Hutchinson, J. & Chapman, V. (1982 a). Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theoretical and Applied Genetics 61, 2733.CrossRefGoogle ScholarPubMed
Miller, T. E. & Reader, S. M. (1986). New addition and substitution lines. European Wheat Aneuploid Cooperative Newsletter, 1213.Google Scholar
Miller, T. E., Reader, S. M. & Ainsworth, C. C. (1985). A chromosome of Hordeum chilense homoeologous to group 7 of wheat. Canadian Journal of Genetics and Cytology 27, 101104.CrossRefGoogle Scholar
Miller, T. E., Reader, S. M. & Chapman, V. (1982 b). The addition of Hordeum chilense chromosomes to wheat. Induced Variability in Plant Breeding EUCARPIA International Symposium, pp. 7981. Wageningen, Pudoc.Google Scholar
Netzle, S. & Zeller, F. J. (1984). Cytogenetic relationship of Aegilops longissima chromosomes with common wheat chromosomes. Plant Systematics and Evolution 145, 113.CrossRefGoogle Scholar
Nishikawa, K. & Nobuhara, M. (1971). Genetic studies of α-amylase isozymes in wheat. 1. Location of genes and variation in tetra- and hexaploid wheat. Japanese Journal of Genetics 46, 345358.Google Scholar
Nishikawa, K., Furuta, Y. & Goshima, H. (1975). Genetic studies of α-amylase isozymes in wheat. II. Reconstituted AABB tetraploid, Aegilops squarrosa, and their synthetic AABBDD hexaploid. Japanese Journal of Genetics 50, 409416.Google Scholar
Nishikawa, K., Furuta, Y. & Wada, T. (1980). Genetic studies of α-amylase in wheat. III. Intraspecific variation in Aegilops squarrosa and birthplace of hexaploid wheat. Japanese Journal of Genetics 55, 325336.Google Scholar
Pietro, M. E. & Hart, G. E. (1985). The genetic control of triosephosphate isomerase in hexaploid wheat and other Triticeae species. Genetical Research 45, 127142.CrossRefGoogle Scholar
Powling, A., Islam, A. K. M. R. & Shepherd, K. W. (1981). Isozymes in wheat–barley hybrid derivative lines. Biochemical Genetics 19, 237254.CrossRefGoogle ScholarPubMed
Riley, R. (1965). Cytogenetics and plant breeding. Genetics Today. Proceedings of the Eleventh International Congress of Genetics, vol. 3, pp. 681685. The Hague.Google Scholar
Riley, R. & Chapman, V. (1958). The production and phenotypes of wheat–rye chromosome addition lines. Heredity 12, 301315.CrossRefGoogle Scholar
Riley, R., Chapman, V. & Miller, T. E. (1972). Genetics of chromosome pairing and introduction of alien genetic variation. Annual Report, Plant Breeding Institute, Cambridge 1971, 122124.Google Scholar
Riley, R., Chapman, V. & Miller, T. E. (1973). The determination of meiotic chromosome pairing. Proceedings of the Fourth International Wheat Genetics Symposium (ed. Sears, E. R. & Sears, L. M.), pp. 731738. Mo.: University of Columbia.Google Scholar
Shepherd, K. W. (1973). Homoeology of wheat and alien chromosomes controlling endosperm protein phenotypes. Proceedings of the Fourth International Wheat Genetics Symposium (ed. Sears, E. R. & Sears, L. M. S.), pp. 745760. Mo.: University of Columbia.Google Scholar
Tanaka, M. (1955). Chromosome pairing in hybrids between Aegilops sharonensis and some species of Aegilops and Triticum. Wheat Information Service 2, 78.Google Scholar
Tang, K. S. & Hart, G. E. (1975). Use of isozymes as chromosome markers in wheat–rye addition lines and in triticale. Genetical Research 26, 187201.CrossRefGoogle Scholar
Van Heemert, C. & Sybenga, J. (1972). Identification of the three chromosomes involved in the translocations which structurally differentiate the genome of Secale cereale L. from those of Secale montanum Guss and Secale vavilovii Grossh. Genetica 43, 387393.CrossRefGoogle Scholar
Zeller, F. J. & Hsam, S. L. K. (1984). Broadening the genetic variability of cultivated wheat by utilising rye chromatin. Proceedings of the Sixth International Wheat Genetics Symposium (ed. Sakamoto, S.), pp. 161173. Kyoto, Japan.Google Scholar
Zohary, D. & Feldman, M. (1961). Hybridisation between amphidiploids and the evolution of polyploids in the wheat (Aegilops–Triticum) group. Evolution 16, 44–16.CrossRefGoogle Scholar