Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T07:27:33.191Z Has data issue: false hasContentIssue false

Age-related reactivation of an X-linked gene close to the inactivation centre in the mouse

Published online by Cambridge University Press:  14 April 2009

Sheila Brown
Affiliation:
Division of Comparative Medicine, Clinical Research Centre, Watford Road, Harrow, Middlesex, HA1 3UJ
Sohaila Rastan*
Affiliation:
Division of Comparative Medicine, Clinical Research Centre, Watford Road, Harrow, Middlesex, HA1 3UJ
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Age-related reactivation of an X-linked gene which maps close to Xce, the X chromosome inactivation centre, has been observed. In five female mice which carried the X-linked coat colour gene Moblo on the reciprocal translocation T(X;16)16H (Searle's translocation), and the wild-type gene on the normal X chromosome, and therefore expressed the Moblo phenotype due to the non-random inactivation characteristic of Searle's translocation, progressive darkening of the coat was observed as the animals aged. This is due to reactivation of the previously inactivated wild-type gene at the Mo locus on the normal X chromosome. As the Mo locus is located 4 cM distal to Xce, the X chromosome inactivation centre, these observations provide evidence of age-related instability of inactivation of an X-linked gene close to the inactivation centre.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Burgoyne, P. S. (1982). Genetic homology and crossing over in the X and Y chromosomes of mammals. Human Genetics 61, 8590.CrossRefGoogle ScholarPubMed
Cattanach, B. M. (1974). Position effect variegation in the mouse. Genetical Research, Cambridge 23, 291306.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Evans, E. P., Burtenshaw, M. D. & Barlow, J. (1982). Male, female and intersex development in mice of identical chromosome constitution. Nature 300, 445446.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Isaacson, J. H. (1967). Controlling elements in the mouse X chromosome. Genetics 57, 331346.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Pollard, C. E. & Perez, J. N. (1969). Controlling elements in the mouse X chromosome. I. Interaction with X-linked genes. Genetical Research 14, 223235.CrossRefGoogle ScholarPubMed
Eicher, E. M. (1970). X-autosome translocations in the mouse: total inactivation versus partial inactivation of the X chromosome. Advances in Genetics 15, 175259.CrossRefGoogle ScholarPubMed
Evans, E. P., Burtenshaw, M. & Cattanach, B. M. (1982). Cytological evidence for meiotic crossing over between the X and Y chromosome of male mice carrying the sex reversing (Sxr) factor. Nature 300, 443445.CrossRefGoogle Scholar
Gartler, S. M. & Riggs, A. D. (1983). Mammalian X-chromosome inactivation. Annual Review of Genetics 17, 155190.CrossRefGoogle ScholarPubMed
Green, M. C. (ed.) (1981). Genetic Variants and Strains of the Laboratory Mouse. Stuttgart: Gustav Fischer Verlag.Google Scholar
Johnston, P. G. (1981) X chromosome activity in female germ cells of mice heterozygous for Searle's translocation T(X;16)16H. Genetical Research 37, 317322.CrossRefGoogle ScholarPubMed
Johnston, P. G. & Cattanach, B. M. (1981). Controlling elements in the mouse. IV. Evidence of non-random X-inactivation. Genetical Research 37, 151160.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372373.CrossRefGoogle ScholarPubMed
Lyon, M. F., Searle, A. G., Ford, C. E. & Ohno, S. (1964). A mouse translocation suppressing sex-linked variegation. Cytogenetics 3, 306323.CrossRefGoogle ScholarPubMed
McLaren, A. (1986). Sex ratio and testis size in mice carrying Sxr and T(X;16)16H. Developmental Genetics 7, 177185.CrossRefGoogle Scholar
McLaren, A. & Monk, M. (1982). Fertile females produced by inactivation of an X chromosome of ‘sex-reversed’ mice. Nature 300, 446448.CrossRefGoogle Scholar
Migeon, B. R., Johnson, G. G., Wolf, S. F., Axelman, J. & Schmidt, M. (1985). Hyperexpression of HPRT induced by 5-azacytidine in mouse-human hybrid reactivants. Americal Journal of Human Genetics 37, 608611.Google ScholarPubMed
Migeon, B. R., Schmidt, M., Axelman, J. & Cullen, C. Ruta (1986). Complete reactivation of X chromosomes from human chorionic villi with a switch to early DNA replication. Proceedings of the National Academy of Sciences 83, 21822186.CrossRefGoogle ScholarPubMed
Migeon, B. R., Wolf, S. F., Axelman, J., Kaslow, D. C. & Schmidt, M. (1985). Incomplete X chromosome dosage compensation in chorionic villi of human placenta. Proceedings of the National Academy of Sciences 82, 33903394.CrossRefGoogle ScholarPubMed
Mohandas, T., Sparkes, R. S. & Shapiro, L. J. (1981). Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211, 393396.CrossRefGoogle ScholarPubMed
Monk, M. (1981). A stem-line model for cellular and chromosomal differentiation in early mouse development. Differentiation 19, 7176.CrossRefGoogle ScholarPubMed
Monk, M. (1986). Methylation and the X chromosome. BioEssays 4, 204208.CrossRefGoogle ScholarPubMed
Rastan, S. (1982). Primary non-random X-inactivation caused by controlling elements in the mouse demonstrated at the cellular level. Genetical Research, Cambridge 40, 139147.CrossRefGoogle ScholarPubMed
Rastan, S. (1983). Non-random X-chromosome inactivation in mouse X-autosome translocation embryos-location of the inactivation centre. Journal of Embryology and Experimental Morphology 78, 122.Google ScholarPubMed
Rastan, S. & Robertson, E. J. (1985). X-chromosome deletions in embryo-derived (EK.) cell lines associated with lack of X-chromosome inactivation. Journal of Embryology and Experimental Morphology, 90, 379388.Google ScholarPubMed
Russell, L. B. & Cacheiro, N. L. A. (1978). The use of mouse X-autosome translocations in the study of X-inactivation pathways and non-randomness. In Genetic Mosaics and Chimeras in Mammals (ed. Russell, L. B.). New York and London: Plenum Press.CrossRefGoogle Scholar
Russell, L. B. & Montgomery, C. S. (1970). Comparative studies on X-autosome translocations in the mouse. II. Inactivation of autosomal loci, segregation, and mapping of autosomal breakpoints in five T(X;1)'s. Genetics 64, 281312.CrossRefGoogle ScholarPubMed
Singh, L. & Jones, K. W. (1982). Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome. Cell 28, 205216.CrossRefGoogle Scholar
Takagi, N., Yoshida, M. A., Sugawara, O. & Sasaki, M. (1983). Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell 34, 10531062.CrossRefGoogle ScholarPubMed
Venolia, L., Gartler, S. M., Wassman, E. R., Yen, P., Mohandas, T. & Shapiro, L. J. (1982). Transformation with DNA from 5-azacytidine-reactivated X chromosomes. Proceedings of the National Academy of Sciences 79, 23522354.CrossRefGoogle ScholarPubMed
Wareham, K. A., Lyon, M. F., Glenister, P. H. & Williams, E. D. (1987). Age related reactivation of an X-linked gene. Nature 327, 725727.CrossRefGoogle ScholarPubMed