Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T08:03:40.823Z Has data issue: false hasContentIssue false

The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

James W. Ajioka
Affiliation:
Department of Ecology and Evolution, State University of New York, Stony Brook, N.Y. 11794, USA
Walter F. Eanes*
Affiliation:
Department of Ecology and Evolution, State University of New York, Stony Brook, N.Y. 11794, USA
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Little information exists about the mechanisms that determine the fate of mobile elements in natural populations. In this study we catalogue the distribution of 638 P-elements across 114 X chromosomes in samples drawn from three natural populations of Drosophila melanogaster. There is an extremely high occurrence of elements at the tip relative to the rest of the euchromatic chromosome. We demonstrate that the distribution of de novo insertions of the P-element on a specific laboratory chromosome is markedly different; no P-elements were recovered at the tip in the 243 insertion events recorded. In contrast, insertion data for the π2 chromosome suggests an elevated rate associated with the tip site although it does not appear sufficient to explain the large differential accumulation on wild chromosomes. This raises the issue of inter chromosome (or tip) variation in relative rates, as well as the possibility that rates of elimination are lower at the tip.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Anxolabéhère, D., Nouaud, D., Périquet, G. & Tchen, P. (1985). P-element distribution in Eurasian populations of Drosophila melanogaster: A genetic and molecular analysis. Proceedings of the National Academy of Sciences, USA 82, 54185422.CrossRefGoogle ScholarPubMed
Bingham, P. M., Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family. Cell 29, 9951004.CrossRefGoogle Scholar
Black, D. M., Jackson, M. S., Kidwell, M. G. & Dover, G. A. (1987). KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO Journal 6, 41254135.CrossRefGoogle ScholarPubMed
Bregliano, J. C., Picard, G., Bucheton, A., Pelisson, A., Laviage, J. M. & L'Hertier, P. (1980). Hybrid dysgenesis in Drosophila melanogaster. Science 207, 606611.CrossRefGoogle ScholarPubMed
Bridges, C. B. (1938). A revised map of the salivary gland X-chromosome of Drosophila melanogaster. Journal of Heredity 29, 1113.CrossRefGoogle Scholar
Charlesworth, B. & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetical Research 42, 127.CrossRefGoogle Scholar
Davis, P. S., Shen, M. W. & Judd, B. H. (1987). Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proceedings of the National Academy of Sciences, USA 84, 174178.CrossRefGoogle Scholar
Eanes, W. F., Wesley, C., Hey, J., Houle, d. & Ajioka, J. W. (1988). The fitness consequences of P-element in Drosophila melanogaster. Genetical Research 52, 1726.CrossRefGoogle Scholar
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315.CrossRefGoogle Scholar
Engels, W. R. (1988). P elements in Drosophila: In Mobile DNA (ed. Berg, D. and Howe, M.). ASM Publications.Google Scholar
Finnegan, D. J. & Fawcett, D. H. (1986). Transposable elements in Drosophila melanogaster. Oxford Surveys on Eukaryotic Genes 3, 162.Google ScholarPubMed
Goldberg, M. L., Sheen, J.-Q, Gehring, W. J. & Green, M. M. (1983). Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proceedings of the National Academy of Sciences USA 80, 50175021.CrossRefGoogle ScholarPubMed
Kaplan, N. L. & Brookfield, J. Y. F. (1983). The effect on homozygosity of selective differences between sites of transposable elements. Theoretical Population Biology 23, 273280.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA 80, 16551659.CrossRefGoogle ScholarPubMed
Langer-Safer, P. R., Levine, M. & Ward, D. (1982). Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences USA 79, 43814385.CrossRefGoogle ScholarPubMed
Langley, C. H., Montgomery, E., Hudson, R., Kaplan, N. & Charlesworth, B. (1988). On the role of unequal exchange in the containment of transposable element copy number. Genetical Research. 52, 223235.CrossRefGoogle ScholarPubMed
Leigh-Brown, A. J. & Moss, J. E. (1987). Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genetical Research 49, 121128.CrossRefGoogle Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute Washington Publications, no. 627.Google Scholar
Miklos, G. L. G., Yamamoto, M.-T., Davies, J. & Pirrotta, V. (1988). Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the β-heterochromatin of Drosophila melanogaster. Proceedings of the National Academy of Sciences USA 85, 20512055.CrossRefGoogle ScholarPubMed
Montgomery, W. A., Charlesworth, B. & Langley, C. B. (1987). A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genetical Research 49, 3141.CrossRefGoogle Scholar
Montgomery, E. A. & Langley, C. H. (1983). Transposable elements in Mendelian popluations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104, 473483.CrossRefGoogle Scholar
Nitasaka, E., Mukai, T. & Yamazaki, T. (1987). Repressor of P elements in Drosophila melanogaster: Cytotype determination by a defective P element carrying only open reading frames O through 2. Proceedings of the National Academy of Sciences USA 84, 76057608.CrossRefGoogle Scholar
O'Hare, K. & Rubin, G. M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 2535.CrossRefGoogle ScholarPubMed
Roberts, P. A. (1979). Rapid change of chromomeric and pairing patterns of polytene chromosome tips in D. melanogaster: Migration of Polytene–non-polytene transition zone? Genetics 92, 861878.CrossRefGoogle Scholar
Ronsseray, S. & Anxolabéhère, D. (1987). Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94, 433440.CrossRefGoogle Scholar
Rubin, G. M., Kidwell, M. G. & Bingham, P. M. (1982). The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations. Cell 29, 987994.CrossRefGoogle ScholarPubMed