Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T08:36:25.207Z Has data issue: false hasContentIssue false

Absence of clustering of functionally related genes in Pseudomonas aeruginosa*

Published online by Cambridge University Press:  14 April 2009

Barbara Fargie
Affiliation:
Department of Bacteriology, University of Melbourne, Melbourne, Victoria, Australia
B. W. Holloway
Affiliation:
Department of Bacteriology, University of Melbourne, Melbourne, Victoria, Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Phage F116 transduces sufficiently large fragments of the Pseudomonas aeruginosa chromosome for co-transduction of linked markers to occur. The linkage relationships of 176 auxotrophic mutants have been examined by means of this technique, following characterization of the mutants for their nutritional requirements and by other biochemical means. Thirty-two different loci from fourteen biosynthetic pathways have been differentiated by such combined means. Unlike other bacteria, the clustering of related loci of a biosynthetic pathway appears to be rare. This situation was confirmed for the leucine, methionine, adenine, isoleucine plus valine and arginine pathways. No evidence for linkage of markers within the histidine, proline, cysteine and uracil pathways has been found but further data is needed to completely confirm this conclusion for these groups of markers. The importance of these findings in relation to the genetic control of enzyme biosynthesis in P. aeruginosa is discussed. For markers of the tryptophan pathway, two are possibly linked but the other three are definitely not linked. The only confirmed linkage of related markers was between a homoserine locus and a threonine locus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

References

REFERENCES

Adams, M. H. (1959). Bacteriophages. New York: Interscience Publishers.CrossRefGoogle Scholar
Adelberg, E. A. & Meyers, J. W. (1953). Modification of the penicillin technique for the selection of auxotrophic bacteria. J. Bact. 65, 348353.CrossRefGoogle ScholarPubMed
Ames, B. N., Hartman, P. E. & Jacob, F. (1963). Chromosomal alterations affecting the regulation of histidine biosynthetic enzymes in Salmonella. J. molec. Biol. 7, 2342.CrossRefGoogle ScholarPubMed
Anagnostopoulos, C., Barat, M. & Schneider, A. (1964). Étude, par transformation, de deux groupes de génes régisant la biosynthèse de l'isoleucine, de la valine et de la leucine chez Bacillus subtilis. C. r. hebd. Séanc. Acad. Sci., Paris, 258, 749751.Google Scholar
Beckwith, J. R., Pardee, A. B., Austrian, R. & Jacob, F. (1962). Co-ordination of the synthesis of the enzymes of the pyrimidine pathway of E. coli. J. molec. Biol. 5, 618634.CrossRefGoogle Scholar
Bodmer, W. F. & Parsons, P. A. (1962). Linkage and recombination in evolution. Adv. Genet. 11, 2100.Google Scholar
Clowes, R. C. (1958). Investigation of the genetics of cysteineless mutants of Salmonella typhimurium by transduction. J. gen. Microbiol. 18, 154172.Google Scholar
Demerec, M. & Hartman, P. E. (1959). Complex loci in micro-organisms. Ann. Rev. Microbiol. 13, 377406.Google Scholar
Demerec, M. (1964). Clustering of functionally related genes in Salmonella typhimurium. Proc. natn. Acad. Sci. U.S.A. (in press).CrossRefGoogle ScholarPubMed
Don, P. A. & van den Ende, M. (1950). A preliminary study of the bacteriophages of Pseudomonas aeruginosa. J. Hyg., Camb. 48, 196214.CrossRefGoogle ScholarPubMed
Doy, C. H., Rivera, A. & Srinivasan, P. R. (1961). Evidence for the enzymatic synthesis of N-(5′-phosphoribosyl) anthranilic acid, a new intermediate in tryptophan biosynthesis. Biochem. biophys. Res. Commun. 4, 8388.CrossRefGoogle Scholar
Doy, C. H. (1964). The biochemical difference between certain phenotypically similar, but genotypically different, tryptophan auxotrophs of Pseudomonas aeruginosa. Biochim. biophys. Acta (in press).Google Scholar
Ephrati-Elizur, E., Srinivasan, P. R. & Zamenhof, S. (1961). Genetic analysis, by means of transformation, of histidine linkage groups in Bacillus subtilis. Proc. natn. Acad. Sci. U.S.A. 47, 5663.CrossRefGoogle ScholarPubMed
Gorini, L. (1960). Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme. Proc. natn. Acad. Sci. U.S.A. 46, 682690.CrossRefGoogle ScholarPubMed
Gorini, L. & Gunderson, W. (1961). Induction by arginine of enzymes of arginine biosynthesis in Escherichia coli B. Proc. natn. Acad. Sci. U.S.A. 47, 961971.CrossRefGoogle ScholarPubMed
Holloway, B. W. (1955). Genetic recombination in Pseudomonas aeruginosa. J. gen. Microbiol. 15, 221224.CrossRefGoogle Scholar
Holloway, B. W. & Monk, M. (1959). Transduction in Pseudomonas aeruginosa. Nature, Lond. 184, 13261327.CrossRefGoogle Scholar
Holloway, B. W., Egan, J. B. & Monk, M. (1960). Lysogeny in Pseudomonas aeruginosa. Aust. J. exp. Biol. med. Sci. 38, 321329.Google Scholar
Holloway, B. W. & Fargie, B. (1960). Fertility factors and genetic linkage in Pseudomonas aeruginosa. J. Bact. 80, 362368.CrossRefGoogle ScholarPubMed
Holloway, B. W., Monk, M., Hodgins, L. M. & Fargie, B. (1962). Effects of radiation on transduction in Pseudomonas aeruginosa. Virology, 18, 8994.CrossRefGoogle ScholarPubMed
Holloway, B. W., Hodgins, L. M. & Fargie, B. (1963). Unlinked loci affecting related biosynthetic steps in Pseudomonas aeruginosa. Nature, Lond. 199, 926927.CrossRefGoogle ScholarPubMed
Horväth, I., Varga, J. M. & Szentirmai, A. (1964). Control of valine and isoleucine metabolism in Pseudomonas aeruginosa and Escherichia coli. J. gen. Microbiol. 34, 241248.CrossRefGoogle ScholarPubMed
Jacob, F. & Monod, J. (1961). On the regulation of gene activity. Cold Spring Harb. Symp. quant. Biol. 26, 193209.CrossRefGoogle Scholar
Lederberg, J. (1950). Isolation and characterisation of biochemical mutants of bacteria. In Methods in Medical Research (Comrie, J. H. Jnr, ed.), Vol. 3, pp. 520. Chicago: Year Book Publishers.Google Scholar
Lennox, E. (1955). Transduction of linked genetic characters of the host by phage P1. Virology, 1, 190206.CrossRefGoogle Scholar
Margolin, P. (1963). Genetic fine structure of the leucine operon in Salmonella. Genetics, 48, 441457.Google Scholar
Matsushiro, A., Kida, S., Ito, J., Sato, K. & Imamoto, F. (1962). The regulatory mechanism of enzyme synthesis in the tryptophan biosynthetic pathway of Escherichia coli K-12. Biochem. biophys. Res. Commun. 9, 204207.CrossRefGoogle ScholarPubMed
Nester, E. W., Schafer, M. & Lederberg, J. (1963). Gene linkage in DNA transfer: a cluster of genes concerned with aromatic biosynthesis in Bacillus subtilis. Genetics, 48, 529552.CrossRefGoogle ScholarPubMed
Ozeki, H. (1960). Chromosome fragments participating in transduction in S. typhimurium. Genetics, 44, 457470.CrossRefGoogle Scholar
Umbarger, E. & Davis, B. D. (1962). Pathways of amino acid biosynthesis. The Bacteria (Gunsalis, I. C. and Stanier, R. Y., eds.), Vol. 3, pp. 167251. New York: Academic Press.Google Scholar
Vogel, H. J. & Bonner, D. M. (1956). Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97106.CrossRefGoogle ScholarPubMed
Yanofsky, C. (1956). The enzymatic conversion of anthranilic acid to indole. J. biol. Chem. 223, 171184.CrossRefGoogle ScholarPubMed
Yanofsky, C. & Lennox, E. (1959). Transduction and recombination study of linkage relationships among the genes controlling tryptophan synthesis in Escherichia coli. Virology, 8, 425447.CrossRefGoogle ScholarPubMed